Lagrangian Fluid Mechanics
We identify particle clustering originating from tensile instabilities as one of the primary pitfalls. Based on these insights, we enhance both training and rollout inference of GNN-based simulators with varying components from standard SPH solvers, including pressure, viscous, and external force components.
We introduce E(3)-equivariant GNNs to two well-studied fluid-flow systems, namely 3D decaying Taylor-Green vortex and 3D reverse Poiseuille flow. Published at GSI 2023.
We introduce E(3)-equivariant GNNs to two well-studied fluid-flow systems, namely 3D decaying Taylor-Green vortex and 3D reverse Poiseuille flow. Published at GSI 2023.
We generalize graph neural network based simulations of Lagrangian dynamics to complex boundaries as encountered in daily life engineering setups. Published at AAAI 2023.