We identify particle clustering originating from tensile instabilities as one of the primary pitfalls. Based on these insights, we enhance both training and rollout inference of GNN-based simulators with varying components from standard SPH solvers, including pressure, viscous, and external force components.
I am firmly convinced that AI is on the cusp of disrupting simulations at industry-scale. Therefore, I have started a new group at JKU Linz which has strong computer vision, simulation, and engineering components. My vision is shaped by experience both from university and from industry.
We introduce E(3)-equivariant GNNs to two well-studied fluid-flow systems, namely 3D decaying Taylor-Green vortex and 3D reverse Poiseuille flow. Published at GSI 2023.
We introduce E(3)-equivariant GNNs to two well-studied fluid-flow systems, namely 3D decaying Taylor-Green vortex and 3D reverse Poiseuille flow. Published at GSI 2023.
We introduce neural network layers based on operations on composite objects of scalars, vectors, and higher order objects such as bivectors. Published at ICLR 2023.