How far do we get in language modeling when scaling LSTMs to billions of parameters, leveraging the latest techniques from modern LLMs, but mitigating known limitations of LSTMs?
We introduce Universal Physics Transformers (UPTs), an efficient and unified learning paradigm for a wide range of spatio-temporal problems. UPTs operate without grid- or particle-based latent structures, enabling flexibility and scalability across meshes and particles.
Smoothed particle hydrodynamics (SPH) is omnipresent in modern engineering and scientific disciplines. SPH is a class of Lagrangian schemes that discretize fluid dynamics via finite material points that are tracked through the evolving velocity …
PDE-Refiner is an iterative refinement process that enables neural operator training for accurate and stable predictions over long time horizons. Published at NeurIPS 2023 (Spotlight).
We introduce E(3)-equivariant GNNs to two well-studied fluid-flow systems, namely 3D decaying Taylor-Green vortex and 3D reverse Poiseuille flow. Published at GSI 2023.
We introduce E(3)-equivariant GNNs to two well-studied fluid-flow systems, namely 3D decaying Taylor-Green vortex and 3D reverse Poiseuille flow. Published at GSI 2023.