GEOMETRIC AND PHYSICAL QUANTI-TIES IMPROVE E(3) EQUIVARIANT MES-SAGE PASSING

LOGAG READING GROUP

Johannes Brandstetter^{*(1,2)} Rob Hesselink^{*(1)} Elise van der Pol⁽¹⁾ <u>Erik Bekkers⁽¹⁾</u> Max Welling⁽¹⁾

⁽¹⁾ University of Amsterdam

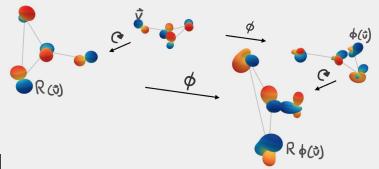
⁽²⁾ JOHANNES KEPLER UNIVERSITY LINZ

JMANNES KEPLER UNIVERSITY LINZ

VECTOR-VALUED INFORMATION

Vector valued quantities are abundant in natural sciences. How to exploit, embed, or learn geometric/physical cues?

- Extend E(3) equivariance towards vector-valued quantities, e.g. force or velocity.
- E(3) equivariance = equivariance with respect to rotations, translation, reflections, (and permutations).
- Augment message and node update networks with vector-valued quantities.



STEERABLE FEATURES, STEERABLE VECTOR SPACES, STEERABLE MLPS

Loosely speaking, steerability wrt certain group: objects transform with matrix-vector multiplication.

- We work in the basis spanned by spherical harmonics¹.
- Spherical harmonics embedding is equivariant w.r.t rotations (we work with subspaces on which rotations act).
- Clebsch-Gordan (CG) tensor product provides equivariant map between steerable vector spaces.

¹Geiger et al. e3nn library https://github.com/e3nn/e3nn.

STEERABLE FEATURES, STEERABLE VECTOR SPACES, STEERABLE MLPS

Loosely speaking, steerability wrt certain group: objects transform with matrix-vector multiplication.

- We work in the basis spanned by spherical harmonics¹.
- Spherical harmonics embedding is equivariant w.r.t rotations (we work with subspaces on which rotations act).
- Clebsch-Gordan (CG) tensor product provides equivariant map between steerable vector spaces.

$$\mathbf{x} \quad \mathbf{\tilde{h}}^{(l)} = \mathbf{Y}^{(l)}(\mathbf{x}) \quad \mathbf{Y}_m^{(l)}(\cdot) \quad \sum h_m^l \mathbf{Y}_m^{(l)}(\cdot)$$

$$\begin{bmatrix} h_0^l \\ h_1^l \\ h_1^l \\ h_2^l \end{bmatrix} \quad \mathbf{\tilde{h}}$$

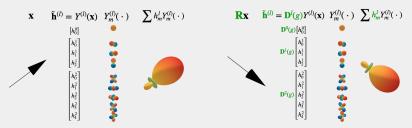
$$\begin{bmatrix} h_0^2 \\ h_1^2 \\ h_2^2 \\ h_2^2 \\ h_1^2 \\ h_1^2 \end{bmatrix} \quad \mathbf{\tilde{h}}$$

¹Geiger et al. e3nn library https://github.com/e3nn/e3nn.

STEERABLE FEATURES, STEERABLE VECTOR SPACES, STEERABLE MLPS

Loosely speaking, steerability wrt certain group: objects transform with matrix-vector multiplication.

- We work in the basis spanned by spherical harmonics¹.
- Spherical harmonics embedding is equivariant w.r.t rotations (we work with subspaces on which rotations act).
- Clebsch-Gordan (CG) tensor product provides equivariant map between steerable vector spaces.



¹Geiger et al. e3nn library https://github.com/e3nn/e3nn.

STEERABLE E(3) EQUIVARIANT GRAPH NEURAL NET-WORKS (SEGNNS)

Message (ϕ_m) and node update (ϕ_f) networks as CG tensor products interleaved with non-linearities:

Steerable node vector f
_i for node i, conditioned on geometric or physical cues a
_i/a
_{ij}.

$$\tilde{\mathbf{m}}_{ij} = \phi_m \left(\underbrace{\tilde{\mathbf{f}}_{i}, \tilde{\mathbf{f}}_{j}, \|\mathbf{x}_{j} - \mathbf{x}_{i}\|^{2}}_{\tilde{\mathbf{h}}_{ij}}, \tilde{\mathbf{a}}_{ij} \right) \qquad \tilde{\mathbf{h}}^{l-1}_{2 \times 0 e^{j_{0}}} \tilde{\mathbf{a}}_{ij}$$

$$\tilde{\mathbf{f}}'_{i} = \phi_f \left(\underbrace{\tilde{\mathbf{f}}_{i}, \sum_{j \in \mathcal{N}(i)} \tilde{\mathbf{m}}_{ij}, \tilde{\mathbf{a}}_{i}}_{\tilde{\mathbf{h}}_{i}} \right) \qquad \tilde{\mathbf{h}}^{l-1}_{i} \qquad \tilde{\mathbf{h}}^{l-1}_{i}$$

Message passing of SEGNNs can be thought of as building neural networks via **non-linear (steerable) group convolutions**:

Tensor field networks², Cormorant³, or SE(3)-Transformer⁴ can all be written in linear convolution form:

$$\tilde{\mathbf{f}}'_{i} = \sum_{j \in \mathcal{N}(i)} \underbrace{\mathbf{W}_{\tilde{\mathbf{a}}_{ij}}(\|\mathbf{x}_{j} - \mathbf{x}_{i}\|)}_{\text{CG weights}} \tilde{\mathbf{f}}_{j}, \text{ or } \tilde{\mathbf{f}}'_{i} = \sum_{j \in \mathcal{N}(i)} \underbrace{\mathbf{W}_{\tilde{\mathbf{a}}_{ij}}(\tilde{\mathbf{f}}_{i}, \tilde{\mathbf{f}}_{j}, \|\mathbf{x}_{j} - \mathbf{x}_{i}\|)}_{\text{CG weights}} \tilde{\mathbf{f}}_{j}.$$

SEGNN messages are obtained highly non-linear:

$$\widetilde{\mathsf{m}}_{ij} = \widetilde{\mathsf{MLP}}_{\widetilde{\mathbf{a}}_{ij}}(\widetilde{\mathbf{f}}_i, \widetilde{\mathbf{f}}_j, \|\mathbf{x}_j - \mathbf{x}_i\|^2) = \sigma(\mathsf{W}_{\widetilde{\mathbf{a}}_{ij}}^{(n)}(\dots(\sigma(\mathsf{W}_{\widetilde{\mathbf{a}}_{ij}}^{(1)}\widetilde{\mathsf{h}}_i)))) \ .$$

²Thomas et al. Rotation-and translation-equivariant neural networks for 3d point clouds.

³Anderson et al. Cormorant: Covariant molecular neuralnetworks.

⁴Fuchs et al. Se (3)-transformers: 3d roto-translation equivariant attention networks.

We work with gated non-linearities:

 Direct sum of two sets of irreps for h^l (l > 0): (i) scalar irreps passed through activation functions (gating), (ii) higher order irreps multiplied by gating

Framing message passing as non-linear convolution allows us to see the node update as **new equivariant activation function**:

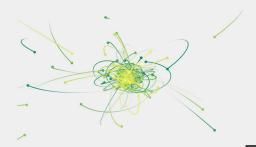
$$\tilde{\mathbf{f}}'_{i} = \phi_{f} \left(\underbrace{\tilde{\mathbf{f}}_{i}, \sum_{j \in \mathcal{N}(i)} \tilde{\mathbf{m}}_{ij}, \tilde{\mathbf{a}}_{i}}_{\tilde{\mathbf{h}}_{i}} \right)$$

Activation function as non-linear MLPs, which are applied node-wise.

SEGNNs give you an advantage when (i) there is physical and geometrical information available, and (ii) full connectivity of the graphs is computationally not tractable.

- Enrich (steer) node updates via velocity, force, momentum, acceleration, spin, angular momentum ...
- Enrich (steer) messages via relative position, relative forces, dipole moments, ...

Method	MSE
SE(3)-Tr.	.0244
TFN	.0155
NMP	.0107
Radial Field	.0104
EGNN	.0070
SE _{linear}	.0116
SE _{non-linear}	.0060
SEGNN _G	.0056
SEGNN _{G+P}	.0043



ICLR POSTER: 6225 PAPER: GEOMETRIC AND PHYSICAL QUANTITIES IMPROVE E(3) EQUIVARIANT MESSAGE PASSING ARXIV:2110.02905 CODE: HTTPS://GITHUB.COM/ROBDHESS/STEERABLE-E3-GNN

CODE BASE

Code: https://github.com/RobDHess/Steerable-E3-GNN

$$\tilde{\mathbf{m}}_{ij} = \phi_m \left(\underbrace{\tilde{\mathbf{f}}_{i}, \tilde{\mathbf{f}}_{j}, \|\mathbf{x}_j - \mathbf{x}_i\|^2}_{\tilde{\mathbf{h}}_{ij}}, \tilde{\mathbf{a}}_{ij} \right)$$
$$\tilde{\mathbf{f}}'_i = \phi_f \left(\underbrace{\tilde{\mathbf{f}}_{i}, \sum_{j \in \mathcal{N}(i)} \tilde{\mathbf{m}}_{ij}, \tilde{\mathbf{a}}_{i}}_{\tilde{\mathbf{h}}_i} \right)$$

Require: $\tilde{\mathbf{f}}_i, \mathbf{x}_{ij}, \mathbf{v}_i^1, \mathbf{v}_i^2$ Steerable nodes $\tilde{\mathbf{f}}_i$, relative position vector \mathbf{x}_{ij} between node $\tilde{\mathbf{f}}_i$ and node $\tilde{\mathbf{f}}_j$, geometric or physical quantities $\mathbf{v}_i^1, \mathbf{v}_i^2$ such as velocity, acceleration, spin, or force.

function O3_TENSOR_PRODUCT(input1, input2) output ← CGTensorProduct(input1, input2) ▷ Apply CG tensor product following Eq. (6) output ← output + bias Add bias to zero order irreps return output end function function O3_TENSOR_PRODUCT_SWISH_GATE(input1, input2) output \oplus g_i \leftarrow O3_TENSOR_PRODUCT(input1, input2) Output plus scalar irreps g. $output_{rated} \leftarrow Gate(output, Swish(g_i))$ > Transform output via gated non-linearities return output end function $\tilde{\mathbf{a}}_{i,i} \leftarrow \text{SphericalHarmonicEmbedding}(\mathbf{x}_{i,i})$ \triangleright Spherical harmonic embedding of \mathbf{x}_{ij} (Eq. (4)) $\tilde{\mathbf{v}}_{i}^{1} \leftarrow \text{SphericalHarmonicEmbedding}(\mathbf{v}_{i}^{1})$ \triangleright Spherical harmonic embedding of \mathbf{v}_{i}^{1} (Eq. (4)) $\tilde{\mathbf{v}}^2 \leftarrow \text{SphericalHarmonicEmbedding}(\mathbf{v}^2)$ \triangleright Spherical harmonic embedding of \mathbf{v}^2 (Eq. (4)) $\tilde{\mathbf{a}}_i \leftarrow \sum \tilde{\mathbf{a}}_{ij} + \tilde{\mathbf{v}}_i^1 + \tilde{\mathbf{v}}_i^2$ Node attributes $\tilde{\mathbf{h}}_{ii} \leftarrow \tilde{\mathbf{f}}_i \oplus \tilde{\mathbf{f}}_i \oplus \|\mathbf{x}_{ii}\|^2$ \triangleright Concatenate input for messages between \tilde{f}_i , \tilde{f}_i $\tilde{\mathbf{m}}_{ii} \leftarrow \mathbf{O3}_{TENSOR}_{PRODUCT}_{SWISH}_{GATE}(\tilde{\mathbf{h}}_{ii}, \tilde{\mathbf{a}}_{ii})$ First non-linear message laver $\tilde{\mathbf{m}}_{ii} \leftarrow O3_TENSOR_PRODUCT_SWISH_GATE(\tilde{\mathbf{m}}_{ii}, \tilde{\mathbf{a}}_{ii})$ Second non-linear message laver $\tilde{\mathbf{m}}_i \leftarrow \sum \tilde{\mathbf{m}}_{ij}$ Aggregate messages m
_{ii} $\tilde{\mathbf{f}}'_i \leftarrow O3_TENSOR_PRODUCT_SWISH_GATE(\tilde{\mathbf{f}}_i \oplus \tilde{\mathbf{m}}_i, \tilde{\mathbf{a}}_i)$ First non-linear node update layer $\tilde{\mathbf{f}}_{i}^{i} \leftarrow \tilde{\mathbf{f}}_{i} + O3_TENSOR_PRODUCT(\tilde{\mathbf{f}}_{i}^{i}, \tilde{\mathbf{a}}_{i})$ Second linear node update layer

Related Work

			Task Units	α bohr ³	$\Delta \varepsilon$ meV	ε _{HOMO} meV	$\frac{\varepsilon_{\rm LUMO}}{{ m meV}}$	 D	Та
non-linear		no geometry	NMP	.092	69	43	38	.030	Table
	regular	\mathbb{R}^3	SchNet *	.235	63	41	34	.033	Ņ
pseudo-linear	steerable	\mathbb{R}^3	Cormorant	.085	61	34	38	.038	Q
	steerable	SE(3)	L1Net	.088	68	46	35	.043	omparison
	regular	G	LieConv	.084	49	30	25	.032	ğ
	steerable	SE(3)	TFN	.223	58	40	38	.064	aria
pseudo-linear	steerable	SE(3)	SE(3)-Tr.	.142	53	35	33	.051	ğ
non-linear	regular	$\mathbb{R}^3 \times S^2 \times \mathbb{R}^+$	DimeNet++ *	.043	32	24	19	.029	
non-linear	regular	$\mathbb{R}^3 \times S^2 \times \mathbb{R}^+$	SphereNet *	.046	32	23	18	.026	n
non-linear	reguleerable?	SE(3)	PaiNN *	.045	45	27	20	.012	QM9
non-linear	regular	\mathbb{R}^3	EGNN	.071	48	29	25	.029	/19.
non-linear	steerable	SE(3)	SEGNN (Ours)	.060	42	24	21	.023	

■ Group convolutions, one way or the other⁵:

- "Any equivariant linear layer between feat maps on homogeneous spaces is a group conv
- If $X \equiv G/H$: kernel has symmetry constraints (SchNet, EGNN, ...)
- Idea of non-linear convolution discussed in Section 3.
- Recent work by Cesa, Lang & Weiler ⁶: comprehensive theory and code framework for general steerable CNNs.

⁵See e.g. Thm. 1 in: Bekkers, E. J. (2019). B-Spline CNNs on Lie groups. In ICLR.

⁶Cesa, G, Lang, L., Weiler, M. (2022). A Program to Build E(N)-Equivariant Steerable CNNs. In ICLR.

RELATED WORK: SCHNET⁸ LINEAR \mathbb{R}^3 CONVOLUTION

Given the feature representations of n objects $X^l = (\mathbf{x}_1^l, \dots, \mathbf{x}_n^l)$ with $\mathbf{x}_i^l \in \mathbb{R}^F$ at locations $R = (\mathbf{r}_1, \dots, \mathbf{r}_n)$ with $\mathbf{r}_i \in \mathbb{R}^D$, the continuous-filter convolutional layer l requires a filter-generating function

$$W^l : \mathbb{R}^D \to \mathbb{R}^F,$$

that maps from a position to the corresponding filter values. This constitutes a generalization of a filter tensor in discrete convolutional layers. As in dynamic filter networks [34], this filter-generating function is modeled with a neural network. While dynamic filter networks generate weights restricted to a grid structure, our approach generalizes this to arbitrary position and number of objects. The

output \mathbf{x}_{i}^{l+1} for the convolutional layer at position \mathbf{r}_{i} is then given by

Filter/weights conditioned on $\|\mathbf{r}_i - \mathbf{r}_i\|$

$$\mathbf{x}_i^{l+1} = (X^l * W^l)_i = \sum_j \mathbf{x}_j^l \circ W^l(\mathbf{r}_i - \mathbf{r}_j), \tag{2}$$

Separable convolution ("gating")

where "o" represents the element-wise multiplication. We apply these convolutions feature wise for computational efficiency [35]. The interactions between feature maps are handled by separate object-wise or, specifically, atom-wise layers in SchNet.

Linear SE(3) equivariant convolutions on ℝ³.
 Depth/channel-wise seperable⁷

⁷ Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-1258).

⁸ Schütt, K., Kindermans, P. J., Sauceda Felix, H. E., Chmiela, S., Tkatchenko, A., & Müller, K. R. (2017). Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. NeurIPS, 30.

RELATED WORK: EGNN⁹ NON-LINEAR \mathbb{R}^3 CONV

$$\mathbf{m}_{ij} = \phi_e \left(\mathbf{h}_i^l, \mathbf{h}_j^l, \left\| \mathbf{x}_i^l - \mathbf{x}_j^l \right\|^2, a_{ij} \right)$$
(3)

$$\mathbf{x}_{i}^{l+1} = \mathbf{x}_{i}^{l} + C \sum_{j \neq i} \left(\mathbf{x}_{i}^{l} - \mathbf{x}_{j}^{l} \right) \phi_{x} \left(\mathbf{m}_{ij} \right)$$
(4)

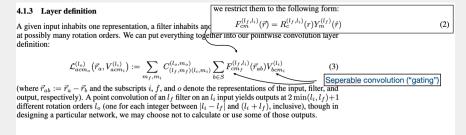
$$\mathbf{m}_i = \sum_{j \neq i} \mathbf{m}_{ij} \tag{5}$$

$$\mathbf{h}_{i}^{l+1} = \phi_{h} \left(\mathbf{h}_{i}^{l}, \mathbf{m}_{i} \right)$$
(6)

- Non-linear SE(3) equivariant "convolutions" on \mathbb{R}^3 .
 - Messages "**conditioned**" on $||\mathbf{x}_i \mathbf{x}_j||$
- We extend this to the steerable case to obtain:
 - ▶ Non-linear SE(3) equivariant "convolutions" on $\mathbb{R}^3 \times SO(3)$.

⁹Satorras, V. G., Hoogeboom, E., & Welling, M. (2021, July). E (n) equivariant graph neural networks. In International Conference on Machine Learning (pp. 9323-9332). PMLR.

RELATED WORK: TFN¹⁰ AND NEQUIP¹¹ LINEAR STEERABLE E(3) CONV



Steerable group convolution of the form $\sum {f W}_{ ilde{a}_{ij}}(r) ilde{V}({f x}_j)$, using spherical harmonics (SH) and the CG tensor product, here with with $\tilde{a}_{ii} = Y(\hat{r})$ the SH embedding of relative positions. See section 3.

■ *Linear SE*(3) equivariant "convolutions" on *SE*(3).

¹⁰Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., & Riley, P. (2018). Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint arXiv:1802.08219.

¹¹Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P., Kornbluth, M., ... & Kozinsky, B. (2021). Se (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials, arXiv preprint arXiv:2101.03164.

RELATED WORK: CORMORANT¹³ PSEUDO-LINEAR STEERABLE E(3) CONV

(9)

The actual form of the vertex activations captures "one-body interactions" propagating information from the previous layer related to the same atom and (indirectly, via the edge activations) "two-body interactions" capturing interactions between pairs of atoms:

$$F_{i}^{s-1} = \left[\underbrace{F_{i}^{s} \oplus \left(F_{i}^{s-1} \otimes_{\operatorname{cg}} F_{i}^{s-1}\right)}_{\operatorname{cne-body part}} \oplus \underbrace{\left(\sum_{j} G_{i,j}^{s} \otimes_{\operatorname{cg}} F_{j}^{s-1}\right)}_{\operatorname{two-body part}}\right] \cdot \underbrace{W_{s,\ell}^{\operatorname{vertex}}}_{s,\ell}.$$
(8)

Steerable group convolution of the form $\sum \mathbf{W}_{\tilde{a}_i}(r, F_i, F_i) \tilde{F}(\mathbf{x}_i)$

Here $G_{i,j}^s$ are SO(3)-vectors arising from the edge network. Specifically, $G_{i,j}^{s,\ell} = g_{i,j}^{s,\ell} Y^{\ell}(\hat{r}_{i,j})$, where $Y^{\ell}(\hat{r}_{i,i})$ are the spherical harmonic vectors capturing the relative position of atoms i and j. The edge activations, in turn, are defined

$$g_{i,j}^{s,\ell} = \mu^s(r_{i,j}) \left[\left(g_{i,j}^{s-1,\ell} \oplus \left(F_i^{s-1} \cdot F_j^{s-1} \right) \oplus \eta^{s,\ell}(r_{i,j}) \right) W_{s,\ell}^{\mathrm{edge}} \right]$$

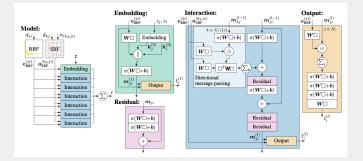
where we made the $\ell = 0, 1, \dots, L$ irrep index explicit. As before, in these formulae, \oplus denotes concatenation over the channel index c, $\eta_c^{s,\ell}(r_{i,j})$ are learnable radial functions, and $\mu_c^s(r_{i,j})$ are learnable cutoff functions limiting the influence of atoms that are farther away from atom i. The Fully separable (learnable channel mixing outside aggregation)

■ Pseudo-Linear SE(3) equivariant "convolutions" on SE(3). ■ See also SE(3) transformers¹² with learnable "attention"

¹² Fuchs, F., Worrall, D., Fischer, V., & Welling, M. (2020). Se (3)-transformers: 3d roto-translation equivariant attention networks. NeurIPS, 33, 1970-1981.

¹³Anderson, B., Hy, T. S., & Kondor, R. (2019). Cormorant: Covariant molecular neural networks. Advances in neural information processing systems, 32.

RELATED WORK: DIMENET¹⁴ NON-LINEAR REGULAR E(3) CONV

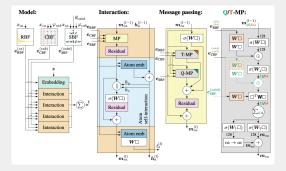


■ Non-Linear SE(3) equivariant "convolutions" on ??.

• Messages conditioned on *invariants* s.a. distances and angles.

¹⁴ Klicpera, J., Gross, J., & Günnemann, S. (2019, September). Directional Message Passing for Molecular Graphs. In International Conference on Learning Representations.

RELATED WORK: GEMNET¹⁵ (1) NON-LINEAR REGULAR E(3) CONV



■ Non-Linear SE(3) equivariant "convolutions" on $\mathbb{R}^3 \times S^2$.

Messages conditioned on *invariants* s.a. distances and angles.

¹⁵Klicpera, J., Becker, F., & Günnemann, S. (2021, May). GemNet: Universal Directional Graph Neural Networks for Molecules. In NeurIPS.

RELATED WORK: **GEMNET**¹⁶ (2)

4 From spherical representations to directional message passing

Eq. (3) only defines the relationship for a fixed direction, while models commonly use different directional meshes for the input and output. To incorporate this we add a convolution with a learned filter F_2 , which can only improve the model's expressiveness. Since the input and output are spherical functions, the used filter F_2 has to be zonal, i.e. it can only depend on one angle. This can be zepressed as [17] Group convolution

$$\begin{split} \hat{H}_{a}^{\text{der}}(\boldsymbol{X},\boldsymbol{H})(\hat{r}_{o}) &= \theta \boldsymbol{H}_{a}(\hat{r}_{o}) + \int_{\text{SO(3)}} \sum_{b \in \mathcal{N}_{a}} F_{\text{sphere}}(\boldsymbol{x}_{ba},\boldsymbol{R}\hat{n}) \sum_{i \in \mathcal{R}_{a}} \boldsymbol{H}_{bi} \delta(\boldsymbol{R}\hat{n} - \hat{r}_{i}) F_{2}(\boldsymbol{R}^{-1}\hat{r}_{o}) \, \mathrm{d}\boldsymbol{R} \\ &= \theta \boldsymbol{H}_{a}(\hat{r}_{o}) + \sum_{b \in \mathcal{N}_{a}} F_{\text{sphere}}(\boldsymbol{x}_{ba}, \hat{r}_{i}) \boldsymbol{H}_{bi} F_{2}(\boldsymbol{x}^{b}_{o}\hat{r}_{i}), \quad \\ \begin{bmatrix} \text{Sparse (sum of dirac-\delta) signals on } \mathbb{R}^{3} \times S^{2} \\ & (6) \\ \end{bmatrix} \\ \text{where } \mathcal{R}_{b} \text{ denotes the directional mesh of atom } b \text{ with mesh directions denoted by } \hat{r}_{i}, \text{ and } \hat{r}_{o}, \text{specifies} \\ & \texttt{Message passing between the edges of an } \mathbb{R}^{3} \text{ argan} \end{split}$$

- *Non-Linear SE*(3) equivariant "convolution" on $\mathbb{R}^3 \times S^2$.
- Eq. (6) is a regular *linear* group conv evaluated at a sparse grid of directions $\subset S^2$ at each node location $\in \mathbb{R}^3$.
- They adjust to non-linear message passing!

¹⁶ Klicpera, J., Becker, F., & Günnemann, S. (2021, May). GemNet: Universal Directional Graph Neural Networks for Molecules. In NeurIPS. non-linear regular E(3) conv

- Related works can all be thought of as G-convs of some kind
- SE(3) group convolutions beat ℝ³ convolutions (no isotropy constraints)
- Non-lin. equivariant layers beat lin. equivariant layers (G-convs)
- Our method combines best of both worlds!
- Our method conveniently handles geometric/physical quantities and shows how it leads to improved performance!