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VECTOR-VALUED INFORMATION

Vector valued quantities are abundant in natural sciences. How
to exploit, embed, or learn geometric/physical cues?
m Extend E(3) equivariance towards vector-valued quantities,
e.g. force or velocity.
m E(3) equivariance = equivariance with respect to rotations,
translation, reflections, (and permutations).
m Augment message and node update networks with
vector-valued quantities.
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STEERABLE FEATURES, STEERABLE VECTOR SPACES,

STEERABLE MLPS

Loosely speaking, steerability wrt certain group: objects
transform with matrix-vector multiplication.
m We work in the basis spanned by spherical harmonics”.
m Spherical harmonics embedding is equivariant w.r.t rotations
(we work with subspaces on which rotations act).
m Clebsch-Gordan (CG) tensor product provides equivariant
map between steerable vector spaces.

1Geiger etal. e3nn library https://github.com/e3nn/e3nn.
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STEERABLE E(3) EQUIVARIANT GRAPH NEURAL NET-

WORKS (SEGNNS)

Message (¢m) and node update (¢f) networks as CG tensor
products interleaved with non-linearities:

m Steerable node vectorf,- for node i, conditioned on
geometric or physical cues a;/aj;.
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NON-LINEAR VS LINEAR CONVOLUTION

Message passing of SEGNNs can be thought of as building neural
networks via non-linear (steerable) group convolutions:

m Tensor field networks?, Cormorant3, or SE(3)-Transformer*
can all be written in linear convolution form:

= > Wy (Ix—x[)f, or =" Wy (F.f Ix—xl)F
eEN() N
Jen (i) CG weights JeN () CG weights

m SEGNN messages are obtained highly non-linear:

i = MLP3, (.. ) — x1%) = oW (... (o (W5 h))) -

g}

2Thomas et al. Rotation-and translation-equivariant neural networks for 3d point clouds.
3Anderson et al. Cormorant: Covariant molecular neuralnetworks.
AFuchs et al. Se (3)-transformers: 3d roto-translation equivariant attention networks.




NEW STEERABLE ACTIVATION FUNCTIONS

We work with gated non-linearities:

m Direct sum of two sets of irreps for h! ([ > 0): (i) scalar irreps
passed through activation functions (gating), (ii) higher
order irreps multiplied by gating

Framing message passing as non-linear convolution allows us to
see the node update as new equivariant activation function:

fl=o £, D My &
JEN(i)

h;

Activation function as non-linear MLPs, which are applied
node-wise.




PERFORMANCE AND APPLICABILITY

SEGNNSs give you an advantage when (i) there is physical and
geometrical information available, and (ii) full connectivity of the
graphs is computationally not tractable.
m Enrich (steer) node updates via velocity, force, momentum,
acceleration, spin, angular momentum ...
m Enrich (steer) messages via relative position, relative forces,
dipole moments, ...

Method MSE

SE(3)-Tr. L0244 & A\

TFN .0155 \

NMP .0107 i

Radial Field .0104

EGNN .0070 el

SElinear -0116 s

SEnon-linear -0060 -

SEGNNg .0056 \
SEGNNg.p .0043

- 6|



ICLR POSTER: 6225

PAPER: GEOMETRIC AND PHYSICAL QUANTITIES
IMPROVE E(3) EQUIVARIANT MESSAGE PASSING
ARXIV:2110.02905

CODE:

HTTPS://GITHUB.COM/ROBDHESS/STEERABLE-E3-GNN



CODE BASE

Code: https://github.com/RobDHess/Steerable-E3-GNN

Require: f.. Xij. Vi elative position vector x;; between node f‘, and node
f;. geometric or physical quantities vf . v; such as velocity, acceleration, spin, or force.

t- Steerable nodes

function O3 OR_PRODUCT(inputl, inpu2)
output + CGTensorProduct{input], input2) & Apply CG tensor product following Eq. [)
output + output + bias & Add bias to zero order irreps
return output

end function

function O3_TENSOR_PRODUCT_SWISH.GATE(inputl. input2)

output & g; + O3_TENSOR_PRODUCT(inputl, input2) = Output plus scalar imeps g;
ﬁ OULPULyey < Gatefoutpur. Swishig;)) > Transform output via gated non-linearities
ij return output

end function
a;; + SphericalHarmonicEmbedding(; ;) &= Spherical harmonic embedding of x,; (Eq. B
v HarmonicEmbedding(v!) Spherical harmonic embedding of v (Eg.
HarmonicEmbedding(v?) :
1

> Spherical harmonic embedding of v; (Eq
> Node atiributes

& Concatenate input for messages between ;. f;
© First non-linear message layer
- Second non-linear message layer

- Aggregate messages

;. a:) - First non-linear node update layer
= Second linear node update layer
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RELATED WORK

non-linear

pseudo-linear

pseudo-linear
non-linear
non-linear
non-linear
non-linear

non-linear

m Group convolutions, one way or the other>:

» "Any equivariant linear layer between feat maps on
homogeneous spaces is a group conv

» If X = G/H: kernel has symmetry constraints (schnet, ecnn, ..)

> |dea of non-linear convolution discussed in Section 3.

m Recent work by Cesa, Lang & Weiler ®: comprehensive theory
and code framework for general steerable CNNs.

regul

regular
steerable
steerable
regular
steerable
steerable
regular
regular
leerable?
regular

steerable

no geometry
R3

R3

SE(3)

G

SE(3)

SE(3)

R x S*x R*
R®x $?x R*
SE(3)

R3

SE(3)

Task o Ae  enomo
Units bohr® meV meV
NMP 092 69 43
SchNet * 235 63 41
Cormorant .085 61 34
L1Net .088 68 46
LieConv .084 49 30
TFN 223 58 40
SE(3)-Tr. 142 53 35
DimeNet++ * 043 32 24
SphereNet * .046 32 23
PaiNN * .045 45 27
EGNN 071 48 29
SEGNN (Ours) .060 42 24

5See e.g. Thm. 1 in: Bekkers, E. J. (2019). B-Spline CNNs on Lie groups. In ICLR.
6Cesa, G, Lang, L., Weiler, M. (2022). A Program to Build E(N)-Equivariant Steerable CNNs. In ICLR.
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R E LAT E D WO R K: 8 LINEAR R3 CONVOLUTION

Given the feature representations of n objects X' = (x!,...,x}) with x} € R¥ at locations

R = (r1,...,r,) withr; € RP, the continuous-filter convolutional layer  requires a filter-generating
function
w':RP - RF,

that maps from a position to the corresponding filter values. This constitutes a generalization of a

filter tensor in discrete convolutional layers. As in dynamic filter networks [34], this filter-generating

function is modeled with a neural network. While dynamic filter networks generate weights restricted

to a grid structure, our approach generalizes this to arbitrary position and numberof objects.The.

output x;** for the convolutional layer at position r; is then given IV— Filter/weights conditioned on [|r; — r].|||

xH = (X W), = xb o Wr; —1j), )
J

Separable convolution (“gating”,
where "o" represents the element-wise multiplication. We apply these convoluti|uu pfcauuc-wmc (‘gating )|

for computational efficiency [35]. The interactions between feature maps are handled by separate
object-wise or, specifically, atom-wise layers in SchNet.

m Linear SE(3) equivariant convolutions on R3.
m Depth/channel-wise seperable’

7Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 1251-1258).

8Sch[itt, K., Kindermans, P. J., Sauceda Felix, H. E., Chmiela, S., Tkatchenko, A., & Miiller, K. R. (2017). Schnet: A
continuous-filter convolutional neural network for modeling quantum interactions. NeurlPS, 30.




RELATED WORK: 9 NON-LINEAR R3 CONV
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m Non-linear SE(3) equivariant "convolutions" on R3.
> Messages "conditioned" on ||x; — X;||
m We extend this to the steerable case to obtain:
» Non-linear SE(3) equivariant "convolutions" on R3 x SO(3).

9Saton’as, V. G., Hoogeboom, E., & Welling, M. (2021, July). E (n) equivariant graph neural networks. In International
Conference on Machine Learning (pp. 9323-9332). PMLR.



RELATED WORK: e AN D 11 LINEAR STEERABLE E(3) CONV

4.1.3 Layer definition we restrict them to the following form:
F(lr oli)

@

. . . . . . . _ ply, (U5)
A given input inhabits one representation, a filter inhabits a om0 (F) = Re ()Y’ (7)
at possibly many rotation orders. We can put everything to@ OUT poIntwise convolution layer
definition:

o (loymo (Lpoli) (= L
L2, Vi) = 30 Ol ey D FS S Fan) Vi, ®

mypm; bes

[Seperable convolution (“gating”)|

(where 7, := 7, — 7, and the subscripts ¢, f, and o denote the representations of the input, filter, and
output, respectively). A point convolution of an [ filter on an /; input yields outputs at 2min(l;, 1) +1
different rotation orders , (one for each integer between |l; — I¢| and (; + l5), inclusive), though in
designing a particular network, we may choose not to calculate or use some of those outputs.

Steerable group convolution of the form Z Wa-u(r)V(xj), using spherical harmonics (SH) and the

bes
CG tensor product, here with with ﬁij = Y(7) the SH embedding of relative positions. See section 3.

m Linear SE(3) equivariant "convolutions" on SE(3).

10Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., & Riley, P. (2018). Tensor field networks:
Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint arXiv:1802.08219.

n Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P, Kornbluth, M., ... & Kozinsky, B. (2021). Se (3)-equivariant

graph neural networks for data-efficient and accurate interatomic potentials. arXiv preprint arXiv:2101.03164.




R E LATE D WO R K: 13 PSEUDO-LINEAR STEERABLE E(3) CONV

Steerable group convolution of the form 2 Wﬁu( s ,)F(x )
besS

The actual form of the vertex activations captures “one-body interactions” propagating information
from the previous layer related to the same atom and (indirectly, via the edge activations) “two-body
interactions” capturing interactions between pairs of atoms:
= (X6, e r)] Wi ®
J

two-body part

Here G} ; are SO(3)-vectors arising from the edge network. Specifically, ijl 95 LY (7))

where V(7 ;) are the spherical harmonic vectors capturing the relative position of atoms z and j.
The edge activations, in turn, are defined

o = W) [(o5 0 (570 F ) @ () W] ©

where we made the € =0,1,..., L irrep mdex exphcn As before, in these formulae
carnable radial functior and

oncatenation over the channel index c, are

Fully separable (learnable channel mixing outside aggregation)

m Pseudo-Linear SE(3) equivariant “convolutions” on SE(3).
m See also SE(3) transformers™ with learnable “attention”

12 . . . A
Fuchs, F., Worrall, D., Fischer, V., & Welling, M. (2020). Se (3)-transformers: 3d roto-translation equivariant
attention networks. NeurlPS, 33, 1970-1981.
13Anderson, B., Hy, T. S., & Kondor, R. (2019). Cormorant: Covariant molecular neural networks. Advances in neural
information processing systems, 32.




RELATED WORK: b NON-LINEAR REGULAR E(3) CONV

i — O :
Gi) Gi) o (ki) (- (1) Gi) 0
R e |5 m;

{ ke NAGY
Embedding o(WO+b)

Model:
diiy  dij | kg0

por [wol—
i) kj,3) H
] S| e ﬁé_ﬂ < &)

12 Interaction i [l o(WO+b)
2| Interaction ~ #(WO+b)
21 Tnteraction |-1+(5)~ o(WO+b)
7| Interaction wo
2] Interaction lz“’
= tnteraction g

o

m Non-Linear SE(3) equivariant “convolutions” on ?2.
> Messages conditioned on invariants s.a. distances and angles.

1l'Klicpera, )., Gross, J., & Glinnemann, S. (2019, September). Directional Message Passing for Molecular Graphs. In
International Conference on Learning Representations.
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RELATED WORK: 75 (1) won-unear recouar £ con

Model: Interaction: Message passing:
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m Non-Linear SE(3) equivariant "convolutions" on R3 x S$2.
» Messages conditioned on invariants s.a. distances and angles.

15Klicpera, )., Becker, F., & Glinnemann, S. (2021, May). GemNet: Universal Directional Graph Neural Networks for
Molecules. In NeurlIPS.
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RELATED WORK:

4 From spherical repr ions to directional

passing

directional meshes for the input and output. To incorporate this we add a convolution with a learned
filter Fj, which can only improve the model’s expressiveness. Since the input and output are spherical

P
functions, the used filter F5 has to be zonal, i.e. it can only depend on one angle. This can be
expressed as [17]

HI(X, H) (7o) = 0H, (7o) / 3 Foeelne, B) 3 Hyb(Bi ~ #)B(R ) 4R
SO(3) pen, - iRy - +
= 0Ha(P0) + g\:, ;; Fiphere (e, Ti) HosFo (L o), |Sparse (sum of dirac-6) signals on R x SZ‘
wiER,
©6)

where R;, denotes the directional mesh of atom b with mesh directions denoted by #;, and
the output direction. The integral vanishes due to the Dirac delta J.

e specif

Message passing between
the edges of an R? graph

m Non-Linear SE(3) equivariant “convolution” on R3 x S2.

m Eq. (6) is a regular linear group conv evaluated at a sparse
grid of directions c S? at each node location € R3.

m They adjust to non-linear message passing!

Klicpera, )., Becker, F., & Glinnemann, S. (2021, May). GemNet: Universal Directional Graph Neural Networks for
Molecules. In NeurlIPS. non-linear regular E(3) conv




RELATED WORK:

m Related works can all be thought of as G-convs of some kind

m SE(3) group convolutions beat R3 convolutions (o isotropy constraints)
m Non-lin. equivariant layers beat lin. equivariant layers (c-convs)

m Our method combines best of both worlds!

m Our method conveniently handles geometric/physical
quantities and shows how it leads to improved performance!



