
RUDDER: Return Decomposition for Delayed Rewards
J. A. Arjona-Medina*1 2 , M. Gillhofer*1 2 , M. Widrich*1 2 , T. Unterthiner1 2 , J. Brandstetter1 2 , S. Hochreiter1 2 3

1LIT AI Lab 2Institute for Machine Learning, JKU Linz 3Institute of Advanced Research in Artificial Intelligence (IARAI)

Abstract. RUDDER is a novel reinforcement learning approach for
delayed rewards in finite Markov decision processes (MDPs). In MDPs
the Q-values are equal to the expected immediate reward plus the ex-
pected future rewards, which are related to bias problems in temporal
difference (TD) learning and to high variance problems in Monte Carlo
(MC) learning. Both problems are even more severe when rewards are
delayed. RUDDER aims at making the expected future rewards equal
to zero, which simplifies Q-value estimation to computing the mean of
the immediate reward. We propose the following two new concepts
to push the expected future rewards toward zero. Reward redistribu-
tion that leads to return-equivalent decision processes with the same
optimal policies and, when optimal, zero expected future rewards. Re-
turn decomposition via contribution analysis which transforms the re-
inforcement learning task into a regression task at which deep learning
excels. On artificial tasks with delayed rewards, RUDDER is signifi-
cantly faster than MC and exponentially faster than Monte Carlo Tree
Search (MCTS), TD(λ), and reward shaping approaches.

Intuition. Assume you have high reward and average reward
episodes. Supervised learning identifies state-actions that are indica-
tive for high rewards. Adjust the policy so that these state-actions
are reached more often. Reward redistribution to these state-actions
achieves these adjustments. For delayed rewards and model-free rein-
forcement learning:
I Do not use value functions that are based on state-actions. The
expected return has to be predicted from every state-action. A single
prediction error might hamper learning. Instead identify relevant state-
actions across the whole episode.
I Do not use temporal difference (TD). It suffers from vanishing infor-
mation even with eligibility traces.
I Do not use Monte Carlo (MC). Averaging over all possible futures
leads to high variance. Model-based MCTS worked for GO and chess.

Basic Insight: Value Functions are Step Functions. Complex
tasks are hierarchical with sub-tasks or sub-goals. A step in the value
function is a change in return expectation: amount or probability to
obtain. Steps indicate achievements, failures, or change of environ-
ment/information. Identifying large steps is important since they speed
up learning tremendously: (i) large increase of return and (ii) sampling
more relevant episodes. In this example an agent has to take a key to
open the door to a treasure:

Both getting the key and opening the door increases the probability of
obtaining the treasure. Learning step functions by fully connected net-
works requires to extract the expected return from every state-action:

L3: hidden 2

L1: input

L2: hidden 1

L4: output

Learning step functions by memorizing is much more sample efficient:

+

+

LSTM

+

y

c

i

z

cell

1.0

Reward Redistribution

Reward Redistribution: Idea and Return decomposition. I Reward
redistribution is not potential-based reward shaping.J We consider re-
ward redistributions that are obtained by return decomposition given an
episodic MDP P̃ with R̃t+1 = 0 for t < T . The value function is as-
sumed to be a step function (blue curve below). Return decomposi-
tion identifies the steps of the value function (green arrows below).
A function g that predicts the expected return E

[
R̃T+1 | sT , aT

]
(big

red arrow below) given the sequence (s, a)0:T = (s0, a0, . . . , sT , aT)
is decomposed into steps ht = h((s, a)0:t) (green arrows below):
g
(
(s, a)0:T

)
=
∑T
t=0 h((s, a)0:t). For most t, we assume ht = 0.

Explaining away problem. Return RT+1 is predicted from sT with-
out using reward causing earlier states or actions. We replace state-
actions by mutually independent differences ∆t = ∆(st−1, at−1, st, at).
With g

(
∆0:T

)
= E

[
R̃T+1 | sT , aT

]
and contributions ht = h(∆t), the

redistributed rewards Rt+1 (small red arrows above) fulfill:

g
(
∆0:T

)
= Eπ

[
G̃0
]

=

T∑
t=0

ht , E [Rt+1 | st−1, at−1, st, at] = ht .

For an SDP P̃ obtained from an optimal reward redistribution (later) the
expected future reward is zero (blue curve at zero above). A return de-
composition leads to an optimal reward redistribution (see below) if
g
(
∆0:t

)
= Eπ

[
R̃T+1 | st, at

]
=
∑t
τ=0 hτ

Reward Redistribution: Basic Concepts. Given is a finite horizon
Markov decision process (MDP) P̃ with states s, actions a, policy π,
episode length T , discount factor γ = 1, and delayed rewards R̃t with
R̃t+1 = 0 for t < T . The return variable is G̃0 =

∑T
t=0 R̃t+1. Opti-

mal reward redistribution transforms this MDP into an SDP P without
delayed rewards but the same optimal policies as the original P̃ . The
expected future rewards are zero.

Definition 1. A sequence-Markov decision process (SDP) is an MDP
where the reward distributions do not have to be Markov.

I Q-values for SDPs are defined by averaging also over the past.

Definition 2. Given an SDP P̃ , a reward redistribution is a fixed pro-
cedure that redistributes for each episode either the realization or the
expectation of the return variable G̃0 along the state-action sequence.
For the return variable G0 of the new SDP P with reward Rt holds

Eπ [G0 | s0, a0, . . . , sT , aT] = Eπ
[
G̃0 | s0, a0, . . . , sT , aT

]
.

Theorem 1. If the SDP P is obtained by reward redistribution from
the SDP P̃ , then both SDPs have the same optimal policies.

Reward Redistribution: Optimality.

Definition 3. A reward redistribution is optimal if κ(T − t− 1, t) = 0 for
0 6 t 6 T −1, where the expected future reward κ(m, t−1) at (t−1)
and 0 6 m 6 T − t is κ(m, t− 1) = Eπ [

∑m
τ=0Rt+1+τ | st−1, at−1].

The Bellman equation becomes qπ(st, at) = r(st, at) + κ(T − t− 1, t).
However, κ cannot be expressed by qπ. In general, an optimal reward
redistribution violates the Markov assumptions, therefore we use SDPs.
The next theorem states that an optimal reward redistribution exists and
that it is only second order Markov.

Theorem 2. We assume a delayed reward MDP P̃ with episodic re-
ward. A new SDP P is obtained by a second order Markov reward
redistribution. Given π, the following two statements are equivalent:

(I) κ(T − t− 1, t) = 0 i.e. the reward redistribution is optimal,
(II) E [Rt+1 | st−1, at−1, st, at] = q̃π(st, at) − q̃π(st−1, at−1)

The optimal reward redistribution is second order Markov since the ex-
pectation of Rt+1 depends on (st−1, at−1, st, at).

Theorem 3. If the reward redistribution for the original MDP P̃ is op-
timal, then the Q-values of the SDP P are given by
qπ(st, at) = r(st, at) = q̃π(st, at) − Est−1,at−1 [q̃π(st−1, at−1) | st]

= q̃π(st, at) − ψπ(st) .

The SDP P and the MDP P̃ have the same advantage function.
Using a behavior policy π̆ the expected immediate reward is

Eπ̆ [Rt+1 | st, at] = q̃π(st, at) − ψπ,π̆(st) .

Reward Redistribution: Novel Learning Algorithms.
I Q-value estimation approaches:
• Estimate q(st, at) = q̃π(st, at)− ψπ(st) (assumes optimality)
• Correct q(st, at) by estimating κ (assumes non-optimality)
• Use eligibility traces on κ (assumes non-optimality)

I Policy Gradients approaches: replace qπ(s, a) by an estimate or a
sample of r(s, a) in Eπ [∇θ log π(a | s; θ)qπ(s, a)]
The offset ψπ(s) reduces the variance as baseline normalization does.
I Q-learning is justified if immediate and future reward are drawn to-
gether, as typically done.

RUDDER — Reward Redistribution Framework:
I Safe exploration: Avoiding low Q-values during exploration interval.
I Lessons replay buffer for training LSTM: Episodes with unseen de-
layed rewards (large prediction errors) go to lessons replay buffer.
I LSTM return decomposition: An LSTM learns to predict sequence-
wide return at every time step. Return decomposition uses differences
of return predictions as redistributed rewards.

Demonstrations. They fill the lessons replay buffer, e.g. episodes from
human experts. Reward redistribution to key actions in demonstrations.

Alternatives to LSTM.
I attention methods and transformers.
I sequence alignment techniques known from bioinformatics, if only
few positive examples are available.

Limitations.
I ineffective if reward is not delayed since LSTM learning takes time.
I problems with very long sequences.
I reward redistribution may introduce disturbing spurious rewards.

Results

Atari game Bowling:
Reward redistribution to key actions that steer the ball to hit all pins.

steering ball

100 framesredistributed reward

original reward

0

striking pins

Artificial Tasks.

2 4 6 8 10 12 14

102

103

104

105

106

107

(I)

RUDDER

Q(λ)
MC
MCTS

0 100 200 300 400 500

104

105

(II)

RUDDER

Q(λ)
MC

RUDDER

10 15 20 25

103

104

105

(III)

RUDDER Q(λ)
RUDDER

RS
look-ahead
look-back

SARSA(λ)
Q(λ)

RS
look-ahead
look-back

20 40

1

2

3

4

delay of the reward

#
ep
is
od
es

Comparison of RUDDER and other methods on artificial tasks with re-
spect to the learning time in episodes (median of 100 trials) vs. the
delay of the reward. The shadow bands indicate the 40% and 60%
quantiles. Task (I) shows that TD methods have problems with van-
ishing information for delayed rewards. Task (II) shows that MC meth-
ods have problems with the high variance of future unrelated rewards.
The y-axis of the inlet is scaled by 105. Task (III) shows that potential-
based reward shaping methods have problems with delayed rewards.
Reward shaping (RS), look-ahead advice (look-ahead), and look-back
advice (look-back) use three different potential functions. The dashed
blue line is RUDDER with Q(λ), vs. RUDDER with Q-estimation. In all
tasks, RUDDER significantly outperforms all other methods.

Atari Games. RUDDER is evaluated with respect to scores and learn-
ing time on Atari games of the Arcade Learning Environment (ALE)
and OpenAI Gym. RUDDER is used on top of the TRPO-based policy
gradient method PPO that uses GAE. We use a PPO baseline with
reward scaling instead of the sign-functions and RUDDER’s safe explo-
ration for fair comparisons. A coarse hyperparameter optimization is
performed for the PPO baseline. For all 52 Atari games, RUDDER uses
the same architectures, losses, and hyperparameters, which were op-
timized for the baseline. Difference to the PPO baseline: redistributed
reward instead of the original.

RUDDER baseline delay delay-event
Bowling 192 56 200 strike pins
Solaris 1,827 616 122 navigate map
Venture 1,350 820 150 find treasure
Seaquest 4,770 1,616 272 collect divers

Average scores over 3 random seeds with 10 trials. ”delay”: frames be-
tween reward and first related action. RUDDER considerably improves
the PPO baseline on delayed reward games.

I RUDDER blog: https://www.jku.at/index.php?id=16426
I Code: https://github.com/ml-jku/rudder
I A practical step-by-step guide for RUDDER in PyTorch:

https://github.com/widmi/rudder-a-practical-tutorial

Visual Confirmation of Detecting Relevant Events by Reward Re-
distribution. We visually confirm a meaningful and helpful redistribu-
tion of reward in both Bowling and Venture during training. As illus-
trated, RUDDER is capable of redistributing a reward to key events in a
game, drastically shortening the delay of the reward and quickly steer-
ing the agent toward good policies. Furthermore, it enriches sequences
that were sparse in reward with a dense reward signal. Video demon-
strations are available at https://goo.gl/EQerZV

In the game Bowling, reward is only given after a turn which consist
of multiple rolls. RUDDER identifies the actions that guide the ball in
the right direction to hit all pins. Once the ball hit the pins, RUDDER
detects the delayed reward associated with striking the pins down. In
the figure only 100 frames are represented but the whole turn spans
more than 200 frames. In the original game, the reward is given only at
the end of the turn.

Venture: reward is only obtained after picking up the treasure. RUD-
DER guides the agent (red) towards the treasure (golden) via reward
redistribution. Reward is redistributed to entering a room with treasure.
Furthermore, reward is redistributed to step towards the treasure. The
environment only gives reward at the event of collecting the treasure.

+

input gate

cell input

+

LSTM

input

recurrent

output recurrent
cell output

... ...

...

+

...

h

Legend

sigmoid activation

cell activation (tanh)h

+ sum over all inputs

branching point

multiplication

feedforward data flow

recurrent data flow

recurrent weights

feedforward weights

y

c

i

z

cell

1.0

RUDDER is implemented with an LSTM architecture without output
gate nor forget gate to simplify the network dynamics. Forget gates
and output gates can modify all cell inputs at times after they have been
observed, which can make the dynamics highly nonlinear.

Identity output activation functions were chosen to support the de-
velopment of linear counting dynamics within the LSTM layer, as is
required to count the reward pieces during an episode chunk. Fur-
thermore, the input gate is only connected recurrently to other LSTM
blocks and the cell input is only connected to forward connections from
the lower layer.

0 2000 4000 6000 8000 10000
samples

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
sq

ua
re

d
bi

as

delay 5
delay 10
delay 15
delay 20
delay 25

Experimental evaluation of bias and variance of different Q-value esti-
mators on the Grid World.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
delay

0

5000

10000

15000

20000

25000

30000

35000

nu
m

be
r o

f s
am

pl
es

TD
RUDDER

Experimental evaluation of bias of TD and RUDDER Q-value estima-
tors on the Grid World. Number of samples to reduce the bias by 80%
of the original error for different delays.

0 100 200 300 400 500
number of samples

0

500

1000

1500

2000

va
ria

nc
e

delay 5
delay 10
delay 15
delay 20
delay 25
delay 30

Average variance reduction for the 10th highest values.

5 10 15 20 25 30
delay

0

200

400

600

800

1000

1200

1400

nu
m

be
r o

f s
ta

te
s

MC
RUDDER

Experimental evaluation of variance of MC and RUDDER Q-value es-
timators on the Grid World. The number of states affected by high
variance grows exponentially with the delay.

average final
baseline RUDDER % baseline RUDDER %

Alien 1,878 3,087 64.4 3,218 5,703 77.3
Amidar 787 724 -8.0 1,242 1,054 -15.1
Assault 5,788 4,242 -26.7 10,373 11,305 9.0
Asterix 10,554 18,054 71.1 29,513 102,930 249
Asteroids 22,065 4,905 -77.8 310,505 154,479 -50.2
Atlantis 1,399,753 1,655,464 18.3 3,568,513 3,641,583 2.0
BankHeist 936 1,194 27.5 1,078 1,335 23.8
BattleZone 12,870 17,023 32.3 24,667 28,067 13.8
BeamRider 2,372 4,506 89.9 3,994 6,742 68.8
Berzerk 1,261 1,341 6.4 1,930 2,092 8.4
Bowling 61.5 179 191 56.3 192 241
Boxing 98.0 94.7 -3.4 100 99.5 -0.5
Breakout 217 153 -29.5 430 352 -18.1
Centipede 25,162 23,029 -8.5 53,000 36,383 -31.4
ChopperCommand 6,183 5,244 -15.2 10,817 9,573 -11.5
CrazyClimber 125,249 106,076 -15.3 140,080 132,480 -5.4
DemonAttack 28,684 46,119 60.8 464,151 400,370 -13.7
DoubleDunk -9.2 -13.1 -41.7 -0.3 -5.1 -1,825
Enduro 759 777 2.5 2,201 1,339 -39.2
FishingDerby 19.5 11.7 -39.9 52.0 36.3 -30.3
Freeway 26.7 25.4 -4.8 32.0 31.4 -1.9
Frostbite 3,172 4,770 50.4 5,092 7,439 46.1
Gopher 8,126 4,090 -49.7 102,916 23,367 -77.3
Gravitar 1,204 1,415 17.5 1,838 2,233 21.5
Hero 22,746 12,162 -46.5 32,383 15,068 -53.5
IceHockey -3.1 -1.9 39.4 -1.4 1.0 171
Kangaroo 2,755 9,764 254 5,360 13,500 152
Krull 9,029 8,027 -11.1 10,368 8,202 -20.9
KungFuMaster 49,377 51,984 5.3 66,883 78,460 17.3
MontezumaRevenge 0.0 0.0 38.4 0.0 0.0 0.0
MsPacman 4,096 5,005 22.2 6,446 6,984 8.3
NameThisGame 8,390 10,545 25.7 10,962 17,242 57.3
Phoenix 15,013 39,247 161 46,758 190,123 307
Pitfall -8.4 -5.5 34.0 -75.0 0.0 100
Pong 19.2 18.5 -3.9 21.0 21.0 0.0
PrivateEye 102 34.1 -66.4 100 33.3 -66.7
Qbert 12,522 8,290 -33.8 28,763 16,631 -42.2
RoadRunner 20,314 27,992 37.8 35,353 36,717 3.9
Robotank 24.9 32.7 31.3 32.2 47.3 46.9
Seaquest 1,105 2,462 123 1,616 4,770 195
Skiing -29,501 -29,911 -1.4 -29,977 -29,978 0.0
Solaris 1,393 1,918 37.7 616 1,827 197
SpaceInvaders 778 1,106 42.1 1,281 1,860 45.2
StarGunner 6,346 29,016 357 18,380 62,593 241
Tennis -13.5 -13.5 0.2 -4.0 -5.3 -32.8
TimePilot 3,790 4,208 11.0 4,533 5,563 22.7
Tutankham 123 151 22.7 140 163 16.3
Venture 738 885 20.1 820 1,350 64.6
VideoPinball 19,738 19,196 -2.7 15,248 16,836 10.4
WizardOfWor 3,861 3,024 -21.7 6,480 5,950 -8.2
YarsRevenge 46,707 60,577 29.7 109,083 178,438 63.6
Zaxxon 6,900 7,498 8.7 12,120 10,613 -12.4

Scores on all 52 considered Atari games for the PPO baseline and
PPO with RUDDER and the improvement by using RUDDER in per-
cent. Agents are trained for 200M game frames (including skipped
frames) with no-op starting condition, i.e. a random number of up to
30 no-operation actions at the start of each game. Episodes are pre-
maturely terminated if a maximum of 108K frames is reached. Scor-
ing metrics are (a) average, the average reward per completed game
throughout training, which favors fast learning and (b) final, the average
over the last 10 consecutive games at the end of training, which favors
consistency in learning. Scores are shown for one agent without safe
exploration.

