
Message Passing Neural
PDE Solvers
ICLR 2022

Johannes Brandstetter∗(1,2)
Daniel Worrall∗(3)
Max Welling(1)

(1) University of Amsterdam
(2) Johannes Kepler University Linz
(3) Qualcomm AI Research

Generalizing neural PDE solver

Partial Di�erential Equations (PDEs) of the form

∂tu = F(t, x,u, ∂xu, ∂xxu, ...) (1)

are abundant, yet numerical PDE solving is a splitter field:
User requirements, structural requirements, implementation
requirements

Goal is to design a fully numerical PDE solver which o�ers
flexibility to satisfy as many requirements as possible.

Common way to solve PDEs is to approximate spatial derivatives
and solve for temporal derivatives.

1 7

Representational containment of spatial solvers

Message passing neural network to update u(x, t)→ u′(x, t′):
uti is a node in the graph with coordinates xi.

Messageedge j→i : mm
ij = φ

(
fmi , f

m
j ,u

t
i − utj , xi − xj,θPDE

)
.

Generalizes estimation of spatial derivatives.
Finite di�erence, finite volume and WENO scheme are
representationally contained (if one, two, or three message
passing layers are used).

Encoder
Node-wise mapping
to the hidden space

Decoder
Node-wise shallow
1D convolution

input time

MLP

MLP

MLP

MPNN

MPNN

CNN

CNN

CNN

output time

Processor
Message passing

MPNN

2 7

Representational containment of temporal solvers

Decoder is a shallow 1D convolutional network with shared
weights across spatial locations.

Smoothes signal over time.
Reminiscent of linear multistep methods (temporal update).

Decoder
Node-wise shallow
1D convolution

CNN

CNN

CNN

output time

3 7

Challenges for autoregressive solvers

Solving PDEs iteratively gives strong physical interpretability,
however:

Hard to train since errors at test time accumulate.
How to enforce stability? How to simulate error input
distribution in training?

Neural
operator

AR
solver

Neural operator
Mapping from initial
conditions to output

Autoregressive model
Mapping between temporally
consecutive time steps

Initial
conditions time

sp
ac
e

4 7

Temporal bundling and pushforward trick

Pushforward trick: mimics distribution shift via adversarial
perturbation.
Temporal bundling: synchronous prediction of multiple
future timesteps.

AR

ARAR

AR

AR AR

AR

Unrolled training
Gradients flow back

through all time steps

Pushforward training
Gradients flow only

through last time step

AR

One-step training
Gradients flow back one

time step only

5 7

Generalization across different equations, dif-
ferent resolutions

0 8 0 8 0 8 0 8
x

2

1

0

1

u(
x,

t)

nx=200
ground truth

nx=100
prediction

nx=50
prediction

nx=40
prediction

Exemplary 1D rollout of an unseen equation (= 0.05, = 0.14, = 0.55) t=0.0s
t=0.2s
t=0.3s
t=0.5s
t=0.6s
t=0.8s
t=1.0s
t=1.1s
t=1.3s
t=1.4s
t=1.6s
t=1.8s
t=1.9s

0 8 0 8 0 8 0 8
x

0.5

0.0

0.5

1.0

1.5

u(
x,

t)

nx=200
ground truth

nx=100
prediction

nx=50
prediction

nx=40
prediction

Exemplary 1D rollout of an unseen equation (= 2.90, = 0.20, = 0.15) t=0.0s
t=0.2s
t=0.3s
t=0.5s
t=0.6s
t=0.8s
t=1.0s
t=1.1s
t=1.3s
t=1.4s
t=1.6s
t=1.8s
t=1.9s

6 7

Generalization across boundary conditions, ir-
regular grids, applicability to higher dimen-
sional problems

-8 0 -8 0 -8 0 -8 0
x

0

20

40

60

80

100

t (
se

co
nd

s)

nx=100
prediction

nx=50
prediction

nx=40
prediction

nx=20
prediction

2D rollout of the wave equation with Dirichlet boundary conditions

1.0

0.5

0.0

0.5

1.0

7 / 7

Poster: 7134
Paper: Message Passing Neural PDE
Solvers arXiv:2202.03376
Code: https://github.com/brandstetter-
johannes/MP-Neural-PDE-Solvers

