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Generalizing neural PDE solver

Partial Di�erential Equations (PDEs) of the form

∂tu = F(t, x,u, ∂xu, ∂xxu, ...) (1)

are abundant, yet numerical PDE solving is a splitter field:
User requirements, structural requirements, implementation
requirements

Goal is to design a fully numerical PDE solver which o�ers
flexibility to satisfy as many requirements as possible.

Common way to solve PDEs is to approximate spatial derivatives
and solve for temporal derivatives.
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Representational containment of spatial solvers

Message passing neural network to update u(x, t)→ u′(x, t′):
uti is a node in the graph with coordinates xi.

Messageedge j→i : mm
ij = φ

(
fmi , f

m
j ,u

t
i − utj , xi − xj,θPDE

)
.

Generalizes estimation of spatial derivatives.
Finite di�erence, finite volume and WENO scheme are
representationally contained (if one, two, or three message
passing layers are used).
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Representational containment of temporal solvers

Decoder is a shallow 1D convolutional network with shared
weights across spatial locations.

Smoothes signal over time.
Reminiscent of linear multistep methods (temporal update).

Decoder
Node-wise shallow
1D convolution 

CNN

CNN

CNN

output time

3 7



Challenges for autoregressive solvers

Solving PDEs iteratively gives strong physical interpretability,
however:

Hard to train since errors at test time accumulate.
How to enforce stability? How to simulate error input
distribution in training?
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Temporal bundling and pushforward trick

Pushforward trick: mimics distribution shift via adversarial
perturbation.
Temporal bundling: synchronous prediction of multiple
future timesteps.
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Generalization across different equations, dif-
ferent resolutions
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Generalization across boundary conditions, ir-
regular grids, applicability to higher dimen-
sional problems
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