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Generalizing neural PDE solver

Partial Differential Equations (PDEs) of the form

∂tu = F (t, x, u, ∂xu, ∂xxu, ...)
are abundant, yet numerical PDE solving is a splitter field:

Goal is to design a fully numerical PDE solver which offers flexibility to satisfy as

many requirements as possible.

Common way to solve PDEs is to approximate spatial derivatives and solve for

temporal derivatives.

Message passing neural network to update u(x, t) → u′(x, t′)

Representational containment of spatial solvers
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Generalizes estimation of spatial derivatives.

Finite difference, finite volume and WENO scheme are representationally contained

(if one, two, or three message passing layers are used).
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Representational containment of temporal solvers

Decoder as 1D convolutional network with sharedweights across spatial locations (rem-

iniscent of linear multistep methods).
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Challenges for autoregressive solvers

Solving PDEs iteratively gives strong

physical interpretability, however:

Hard to train since errors at test time

accumulate.

How to enforce stability? How to

simulate error input distribution in

training?
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Temporal bundling, pushforward trick

Pushforward trick: mimics distribution

shift via adversarial perturbation.

Temporal bundling: synchronous

prediction of multiple future

timesteps.
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Pushforward training
Gradients flow only 

through last time step

Generalization across different equations, different resolutions
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Exemplary 1D rollout of an unseen equation ( = 2.90, = 0.20, = 0.15) t=0.0s
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Generalization across boundary conditions, irregular grids, applicability to
higher dimensional problems
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2D rollout of the wave equation with Dirichlet boundary conditions
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