Generalizing neural PDE solver

Partial Differential Equations (PDEs) of the form

 $\partial_t \mathbf{u} = F(t, \mathbf{x}, \mathbf{u}, \partial_{\mathbf{x}} \mathbf{u}, \partial_{\mathbf{xx}} \mathbf{u}, \dots)$

are abundant, yet numerical PDE solving is a **splitter field**:

- Goal is to design a **fully numerical PDE solver** which offers flexibility to satisfy as many requirements as possible.
- Common way to solve PDEs is to approximate spatial derivatives and solve for temporal derivatives.
- Message passing neural network to update $\mathbf{u}(\mathbf{x},t) \rightarrow \mathbf{u}'(\mathbf{x},t')$

Representational containment of spatial solvers

- Message_{edge j \to i} : $\mathbf{m}_{ij}^m = \phi\left(\mathbf{f}_i^m, \mathbf{f}_j^m, \mathbf{u}_i^t \mathbf{u}_j^t, \mathbf{x}_i \mathbf{x}_j, \boldsymbol{\theta}_{PDE}\right)$.
- Generalizes estimation of spatial derivatives.
- Finite difference, finite volume and WENO scheme are representationally contained (if one, two, or three message passing layers are used).

Representational containment of temporal solvers

Decoder as 1D convolutional network with shared weights across spatial locations (reminiscent of **linear multistep methods**).

Message Passing Neural PDE Solvers

Johannes Brandstetter^{* 12}

¹University of Amsterdam

²Johannes Kepler University Linz ³Qualcomm AI Research

Challenges for autoregressive solvers

Solving PDEs iteratively gives strong physical interpretability, however:

- Hard to train since errors at test time accumulate.
- How to enforce stability? How to simulate error input distribution in training?

Autoregressive model Mapping between temporally consecutive time steps

Temporal bundling, pushforward trick

- shift via adversarial perturbation.
- Temporal bundling: synchronous prediction of multiple future timesteps.

Daniel Worrall* ³ Max Welling¹

Pushforward trick: mimics distribution

Pushforward training Gradients flow only through last time step

Generalization across boundary conditions, irregular grids, applicability to higher dimensional problems

Paper: https://arxiv.org/abs/2202.03376

• Code:

JOHANNES KEPLER UNIVERSITY LINZ

https://github.com/brandstetter-johannes/MP-Neural-PDE-Solvers