Message Passing Neural PDE Solvers
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Generalization across different equations, different resolutions

Generalizing neural PDE solver Challenges for autoregressive solvers
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- Generalizes estimation of spatial derivatives. 0 8 0 8 0 3 0 : — t=1.9
- Finite difference, finite volume and WENO scheme are representationally contained e esstne Tededl
(if one, two, or three message passing layers are used). Mapping between temporally

Generalization across boundary conditions, irregular grids, applicability to

consecutive time steps
higher dimensional problems
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Representational containment of temporal solvers
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Decoder as 1D convolutional network with shared weights across spatial locations (rem-
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iniscent of linear multistep methods).
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Node-wise shallow
1D convolution
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