LIE POINT SYMMETRY DATA AUGMENTATION FOR NEURAL PDE SOLVERS

ICML 2022

Johannes Brandstetter^(1,2,3) Max Welling⁽¹⁾ Daniel Worrall^(4,5)

(1) UNIVERSITY OF AMSTERDAM

(2) JOHANNES KEPLER UNIVERSITY LINZ

(3) NOW AT MICROSOFT RESEARCH

(4) QUALCOMM AI RESEARCH

(5) NOW AT DEEPMIND

Neural PDE solver 'chicken-and-egg problem'

Neural PDE solvers *accelerate* solution time but require *abundant* training data. Training data comes from *slow* solvers!

Neural PDE solver 'chicken-and-egg problem'

Neural PDE solvers *accelerate* solution time but require *abundant* training data. Training data comes from *slow* solvers!

Need cheap ways to enlarge our datasets

Neural PDE solver 'chicken-and-egg problem'

Neural PDE solvers *accelerate* solution time but require *abundant* training data. Training data comes from *slow* solvers!

- Need cheap ways to enlarge our datasets
- **Solution**: Data augmentation! But how?

PARTIAL DIFFERENTIAL EQUATIONS

PDE formulation

PDE Δ specifies relationship between *solution* $\mathbf{u} : \mathcal{X} \to \mathbb{R}^n$ and its derivatives $\{\mathbf{u}_{\mathbf{x}}, \mathbf{u}_{\mathbf{xx}}, ..., \mathbf{u}_{n\mathbf{x}}\}$ at all points $\mathbf{x} \in \mathcal{X}$ as

$$\Delta(\mathbf{x}, \mathbf{u}^{(n)}\Big|_{\mathbf{x}}) = \mathbf{0}$$

PARTIAL DIFFERENTIAL EQUATIONS

PDE formulation

PDE Δ specifies relationship between *solution* $\mathbf{u} : \mathcal{X} \to \mathbb{R}^n$ and its derivatives $\{\mathbf{u}_{\mathbf{x}}, \mathbf{u}_{\mathbf{xx}}, ..., \mathbf{u}_{n\mathbf{x}}\}$ at all points $\mathbf{x} \in \mathcal{X}$ as

$$\Delta(\mathbf{x}, \mathbf{u}^{(n)}\Big|_{\mathbf{x}}) = \mathbf{0}$$

Prolongation: $\mathbf{u}^{(n)} = (\mathbf{u}, \mathbf{u}_{\mathbf{x}}, \mathbf{u}_{\mathbf{xx}}, ..., \mathbf{u}_{n\mathbf{x}})$

PARTIAL DIFFERENTIAL EQUATIONS

PDE formulation

PDE Δ specifies relationship between *solution* $\mathbf{u} : \mathcal{X} \to \mathbb{R}^n$ and its derivatives $\{\mathbf{u}_{\mathbf{x}}, \mathbf{u}_{\mathbf{xx}}, ..., \mathbf{u}_{n\mathbf{x}}\}$ at all points $\mathbf{x} \in \mathcal{X}$ as

$$\Delta(\mathbf{x}, \mathbf{u}^{(n)} \Big|_{\mathbf{x}}) = \mathbf{0}$$

Prolongation:
$$\mathbf{u}^{(n)} = (\mathbf{u}, \mathbf{u}_{\mathbf{x}}, \mathbf{u}_{\mathbf{xx}}, ..., \mathbf{u}_{n\mathbf{x}})$$

Example

1 + 1 dimensional Heat equation in space and time:

$$\Delta(\mathbf{x}, u^{(2)}\big|_{\mathbf{x}}) = u_t - \alpha u_{\mathbf{x}\mathbf{x}} = \mathbf{0}$$

Pointwise transformation:

$$(\mathbf{x}, \mathbf{u}|_{\mathbf{x}}) \stackrel{g}{\mapsto} (g\mathbf{x}, g\mathbf{u}|_{\mathbf{x}}), \quad \text{for all } g \text{ and } (\mathbf{x}, \mathbf{u})$$

Pointwise transformation:

$$(\mathbf{x}, \mathbf{u}|_{\mathbf{x}}) \stackrel{g}{\mapsto} (g\mathbf{x}, g\mathbf{u}|_{\mathbf{x}})$$
, for all g and (\mathbf{x}, \mathbf{u})

Lie point symmetry

Set of *g* mappings solutions $(\mathbf{x}, \mathbf{u}|_{\mathbf{x}})$ to solutions $(g\mathbf{x}, g\mathbf{u}|_{\mathbf{x}})$

Pointwise transformation:

 $(\mathbf{x}, \mathbf{u}|_{\mathbf{x}}) \stackrel{g}{\mapsto} (g\mathbf{x}, g\mathbf{u}|_{\mathbf{x}})$, for all g and (\mathbf{x}, \mathbf{u})

Lie point symmetry

Set of *g* mappings solutions $(\mathbf{x}, \mathbf{u}|_{\mathbf{x}})$ to solutions $(g\mathbf{x}, g\mathbf{u}|_{\mathbf{x}})$

• Note every $g = g_1(\epsilon_1)g_2(\epsilon_2)\cdots g_d(\epsilon_d)$, for $\epsilon_1, ..., \epsilon_d \in \mathbb{R}$

Pointwise transformation:

 $(\mathbf{x}, \mathbf{u}|_{\mathbf{x}}) \stackrel{g}{\mapsto} (g\mathbf{x}, g\mathbf{u}|_{\mathbf{x}})$, for all g and (\mathbf{x}, \mathbf{u})

Lie point symmetry

Set of *g* mappings solutions $(\mathbf{x}, \mathbf{u}|_{\mathbf{x}})$ to solutions $(g\mathbf{x}, g\mathbf{u}|_{\mathbf{x}})$

• Note every $g = g_1(\epsilon_1)g_2(\epsilon_2)\cdots g_d(\epsilon_d)$, for $\epsilon_1, ..., \epsilon_d \in \mathbb{R}$

Cauchy-Kovalevskaya theorem

 $\{g_1, ..., g_d\}$ exhaustive if PDE analytic in its arguments

Example: Korteweg-de Vries equation

$$\Delta((x,t),u^{(3)}) = u_t + uu_x + u_{xxx} = 0$$
.

EXAMPLE: KORTEWEG-DE VRIES EQUATION

$$\Delta((x,t), u^{(3)}) = u_t + uu_x + u_{xxx} = 0$$
.

One-parameter symmetries:

EXAMPLE: KORTEWEG-DE VRIES EQUATION

$$\Delta((x,t), u^{(3)}) = u_t + uu_x + u_{xxx} = 0$$
.

One-parameter symmetries:

$$g_1(\epsilon)(x,t,u)=(x,t+\epsilon,u)$$
 time shift,

EXAMPLE: KORTEWEG-DE VRIES EQUATION

$$\Delta((x,t), u^{(3)}) = u_t + uu_x + u_{xxx} = 0$$
.

One-parameter symmetries:

$$egin{aligned} g_1(\epsilon)(x,t,u) &= (x,t+\epsilon,u) & ext{time shift,} \ g_2(\epsilon)(x,t,u) &= (x+\epsilon,t,u) & ext{space shift,} \end{aligned}$$

$$\Delta((x,t), u^{(3)}) = u_t + uu_x + u_{xxx} = 0$$
.

One-parameter symmetries:

$$egin{aligned} g_1(\epsilon)(x,t,u) &= (x,t+\epsilon,u) & ext{time shift,} \ g_2(\epsilon)(x,t,u) &= (x+\epsilon,t,u) & ext{space shift,} \ g_3(\epsilon)(x,t,u) &= (x+\epsilon t,t,u+\epsilon) & ext{Galilean boost,} \end{aligned}$$

$$\Delta((x,t), u^{(3)}) = u_t + uu_x + u_{xxx} = 0$$
.

One-parameter symmetries:

$$g_{1}(\epsilon)(x,t,u) = (x,t+\epsilon,u)$$
time shift,

$$g_{2}(\epsilon)(x,t,u) = (x+\epsilon,t,u)$$
space shift,

$$g_{3}(\epsilon)(x,t,u) = (x+\epsilon t,t,u+\epsilon)$$
Galilean boost,

$$g_{4}(\epsilon)(x,t,u) = (e^{\epsilon}x,e^{3\epsilon}t,e^{-2\epsilon}u)$$
scaling

1. Find all one-parameter symmetries of Δ : { $g_1, g_2, ..., g_n$ }

- **1.** Find all one-parameter symmetries of Δ : { $g_1, g_2, ..., g_n$ }
- 2. Sample $\epsilon_i \sim p_i(\epsilon_i)$

LIE POINT SYMMETRY DATA AUGMENTATION

- 1. Find all one-parameter symmetries of Δ : $\{g_1, g_2, ..., g_n\}$
- 2. Sample $\epsilon_i \sim p_i(\epsilon_i)$
- 3. Compute $g = g_1(\epsilon_1) \circ g_2(\epsilon_2) \circ \cdots \circ g_d(\epsilon_d)$

LIE POINT SYMMETRY DATA AUGMENTATION

- 1. Find all one-parameter symmetries of Δ : $\{g_1, g_2, ..., g_n\}$
- 2. Sample $\epsilon_i \sim p_i(\epsilon_i)$
- 3. Compute $g = g_1(\epsilon_1) \circ g_2(\epsilon_2) \circ \cdots \circ g_d(\epsilon_d)$
- 4. Transform samples: $(\mathbf{x}, \mathbf{u}|_{\mathbf{x}}) \stackrel{g}{\mapsto} (g\mathbf{x}, g\mathbf{u}|_{\mathbf{x}})$

LIE POINT SYMMETRY DATA AUGMENTATION

- 1. Find all one-parameter symmetries of Δ : $\{g_1, g_2, ..., g_n\}$
- 2. Sample $\epsilon_i \sim p_i(\epsilon_i)$
- 3. Compute $g = g_1(\epsilon_1) \circ g_2(\epsilon_2) \circ \cdots \circ g_d(\epsilon_d)$
- 4. Transform samples: $(\mathbf{x}, \mathbf{u}|_{\mathbf{x}}) \stackrel{g}{\mapsto} (g\mathbf{x}, g\mathbf{u}|_{\mathbf{x}})$
- 5. Reinterpolate to grid: $\mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}'(\mathbf{x})$

DIFFERENT PDES, DIFFERENT SYMMETRIES

■ Korteweg-de Vries equation:

$$\Delta((x,t),u^{(3)}) = u_t + uu_x + u_{xxx} = 0$$

Kuramoto-Shivashinsky equation:

$$\Delta((x,t),u^{(4)}) = u_t + uu_x + u_{xx} + u_{xxxx} = 0$$

Burgers' equation:

$$\Delta((x,t),u^{(2)}) = u_t + uu_x - \nu u_{xx} = 0$$

EQUATION	<i>g</i> ₁	g ₂	g ₃	g_4	${\cal g}_{lpha}$
KdV	$(\mathbf{x}, \mathbf{t} + \epsilon, \mathbf{u}),$	$(\mathbf{x} + \epsilon, \mathbf{t}, \mathbf{u})$,	$(\mathbf{x} + \epsilon \mathbf{t}, \mathbf{t}, \mathbf{u} + \epsilon)$,	$(e^{\epsilon}x, e^{3\epsilon}t, e^{-2\epsilon}u)$	
KS	$(\mathbf{x}, \mathbf{t} + \epsilon, \mathbf{u}),$	$(\mathbf{x} + \epsilon, \mathbf{t}, \mathbf{u}),$	$(x + \epsilon t, t, u + \epsilon)$		
Burgers'	$(x, t + \epsilon, u)$,	$(x + \epsilon, t, u)$,	$(x, t, u + \epsilon)$,	$(e^{\epsilon}x, e^{2\epsilon}t, u),$	$\left(u, t, 2\nu \log \left((1 - \sigma(\epsilon))e^{\frac{1}{2\nu}u} + \sigma(\epsilon)e^{\frac{1}{2\nu}\alpha}\right)\right)$

Different PDEs

LONG ROLLOUTS

Mathematically-grounded treatment of data augmentation for neural PDE solvers

- Mathematically-grounded treatment of data augmentation for neural PDE solvers
- LPSDA comprises the full set of solution-preserving, pointwise, continuous data transformations for any (analytic) PDEs

- Mathematically-grounded treatment of data augmentation for neural PDE solvers
- LPSDA comprises the full set of solution-preserving, pointwise, continuous data transformations for any (analytic) PDEs
- LPSDA improves neural PDE solver sample complexity to over an order of magnitude

- Mathematically-grounded treatment of data augmentation for neural PDE solvers
- LPSDA comprises the full set of solution-preserving, pointwise, continuous data transformations for any (analytic) PDEs
- LPSDA improves neural PDE solver sample complexity to over an order of magnitude
- Solver-agnostic & PDE-agnostic

PAPER: LIE POINT SYMMETRY DATA AUGMENTATION FOR NEURAL PDE SOLVERS

ARXIV:2202.07643 CODE: https://github.com/brandstetter-johannes/LPSDA