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A central mechanism in machine learning is to identify, store, and recognize patterns. How to learn, access, and retrieve such patterns is crucial in Hopfield networks and the more Overview of DeepRC method

recent transformer architectures. We show that the attention mechanism of transformer architectures is actually the update rule of modern Hopfield networks that can store ( ) ( )

exponentially many patterns. We exploit this high storage capacity of modern Hopfield networks to solve a challenging multiple instance learning (MIL) problem in computational & CASTCLAMPETAF fooooo

biology: immune repertoire classification. In immune repertoire classification, a vast number of immune receptors are used to predict the immune status of an individual. This constitutes { CATSRVADYSETAT B recgnor::];ion { === H‘;gﬂﬁ'd E output

a MIL problem with an unprecedentedly massive number of instances, two orders of magnitude larger than currently considered problems, and with an extremely low witness rate. CASSLVADGEGF 0 EeEeEeReRex PeoTnd

Accurate and interpretable machine learning methods solving this problem could pave the way towards new vaccines and therapies, which is currently a very relevant research topic L"' ) \ Sxexe )

intensified by the COVID-19 crisis. In this work, we present our novel method DeepRC that integrates transformer-like attention, or equivalently modern Hopfield networks, into deep h() f() 0(-)
learning architectures for massive MIL such as immune repertoire classification. We demonstrate that DeepRC outperforms all other methods with respect to predictive performance on N
large-scale experiments including simulated and real-world virus infection data and enables the extraction of sequence motifs that are connected to a given disease class. a) X = {Si =1 {Zi i=1 < Y

Motivation & Biological Background

In this work, we tackle the problem of immune repertoire classification using
modern Hopfield networks for extremely massive multiple instance learning.
The immune repertoire of an individual consists of about 10°=10% unique im-
mune receptors, with little overlap between individuals [1]. Immune receptors
enable the immune system to combat pathogens, such as viruses. This is
achieved via binding sites in the receptors that bind to the pathogens. Usually,
the presence of only a small fraction of particular receptors determines whether
an individual is immmune w.r.t. a particular disease [2]. Knowledge about which
binding site makes an individual immune against a pathogen would allow for
the development of novel treatments [3].
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Immune Repertoire Classification by
Massive Multiple Instance Learning

Immune receptors can be extracted from the body, e.g. via blood samples,
and represented as amino acid sequences. This results in a very large bag
of amino acid sequences. Predicting the immune status of an individual given
this bag of sequence instances is essentially a text-book example of a multiple
instance learning (MIL) problem. Characteristic for this exiremely massive MIL
problem are (i) large numbers of instances (~ 300k sequences per bag in our
experiments), (ii) labeled bags without instance labels, and (iii) extremely low
witness rates, which is the rate of discriminating instances per bag, down to
0.01%, where only subsequences determine the bag label. Solving this prob-
lem with an interpretable ML model would allow to infer which (sub)sequences
the model used for prediction and possibly identify the biding sites of interest.
However, in MIL problems considered by machine learning methods up to now,
the number of instances per bag is in the range of hundreds or few thousands.
At the same time, the witness rate is already considered low at 1% — 5% [5].

We employ novel modern Hopfield networks to tackle this challenging mas-
sive MIL task, as they allow to store and retrieve exponentially (in the dimension
of the association space) many patterns.

Modern Hopfield Networks Have
Exponential Storage Capacity

We propose the use of a modern Hopfield network with current state £ and * - _
energy function E = —5_1 log (fo\il exp(ﬁw?&)) + [3_1 log N + %§T§ + %MQ b) [CASTSVALAETAF I c)
as continuous generalizations of binary modern Hopfield-networks [6,7,8,9],
where € is the state pattern and the x; are the stored patterns.

For energy E and state &, the update rule &€V = f(&,X,08) = Xp =
X softmax(8X?1€) is proven to converge globally to stationary points of the
energy E, which are local minima or saddle points, using the concave-convex
procedure. We show that the update rule of modern Hopfield networks is equiv-

motif recognition
Hopfield pooling

To make the computational effort for this number of instances feasible, we
compute the prediction and weight updates using only the 10% of instances
with the highest attention weights per bag and apply strong random instance-
dropout during training.

alent to the self-attention mechanism of transformers [9,10]. Experi mental Eval uatlon
Hopfield Ener New Ener Update Rule Transformer
P — |f‘> P - 1 We analyzed the performance of DeepRC and other immune repertoire classi-
—exp (Ise (1,€XT))  [CT|-1se(6,6XT) + 1£7€ + softmax (8 £X™) X || softmax (\/—d—k QKT)V fication methods on simulated and real data in 4 categories. They include 31
datasets with 785—5k repertoires per dataset and on average 300k instances

per repertoire. DeepRC outperforms all compared methods, significantly out-

We show that our modern Hopfield networks exhibit exponential storage oerforming the second best method, an SVM with a MinMax k-mer kernel.

capacity. For randomly chosen patterns, the number of patterns that can be

stored is exponential in the dimension d of the space of the patterns (z; € R9). Real-world Real-world data with implanted signals LSTM-generated data Simulated
CMV s.m. 1% s.m. 0.1% mm. 1% mm. 0.1% 10% 1% 0.5% 0.1% 0.05% avg.

Theorem 1 We assume a failure pr Obab/l/ ty0 <p<1landr andOm/y chosen patterns DeepRC 0.831 £ 0.002 1.000 & 0.000 0.984-- 0.008 0.999+ 0.001 0.938-0.009 1.000 0.000 1.000-= 0.000 1.000+ 0.000 1.000-= 0.000 0.998+ 0.002 0.865+ 0.211
on the Sphere with radius M = K+/d . We define a := (1 + 1n(2 8K 2 (d — SVM (MM) 0.825 = 0.022 1.000 = 0.000 0.578 0.020 1.000= 0.000 0.5312:0.019 1.000= 0.000 1.000= 0.000 0.9990.001 0.999- 0.002 0.985:+ 0.014 0.832:+ 0.203
2 SVM (J) 0.546 £+ 0.021 0.988 4 0.003 0.527+ 0.016 1.000+ 0.000 0.574+0.019 0.981+ 0.041 1.000+ 0.000 1.000+ 0.000 0.904+ 0.036 0.768+ 0.068 0.543+ 0.076
1))) , b = 2 K5 B , and c = W (oxpl 2 T where Wo iS the upper branch of the KNN (MM) 0.679 + 0.076 0.744 + 0.237 0.486+ 0.031 0.674=+ 0.182 0.500+0.022 0.699+ 0.272 0.717+ 0.263 0.732+ 0.263 0.536+ 0.156 0.516+ 0.153 0.629+ 0.126
S 4 KNN (J) 0.534 £ 0.039 0.652 4 0.155 0.484-+ 0.025 0.695- 0.200 0.508+0.025 0.698 0.285 0.606-= 0.237 0.523+ 0.164 0.5504 0.186 0.539 0.194 0.501- 0.007
Lambert W fU”Cthn, and ensure c > (l) d—1 . Then Wlth prObabIllty 1 _ p the Log. Regr. 0.613 £ 0.044 1.000 £ 0.000 0.585+ 0.045 1.000+ 0.000 0.512+0.015 1.000=+ 0.000 1.000+ 0.000 1.000+ 0.000 0.697+ 0.164 0.466+ 0.103 0.832+ 0.204
— \/Z_) ’ Log. MIL (KMER) 0.582 + 0.065 0.541 £ 0.074 0.506+ 0.034 0.994+ 0.004 0.620+0.153 0.997+ 0.004 0.718+ 0.112 0.637+ 0.144 0.571+ 0.146 0.528+ 0.129 0.662+ 0.216
number of random patterns that can be stored is N > \/]_?C % . Log. MIL (TCRB) 0.515 £ 0.073 0.503 % 0.032 0.501+ 0.016 0.992 0.003 0.782+0.030 0.541+ 0.086 0.566- 0.162 0.468+ 0.086 0.5054 0.067 0.500+ 0.121 0.501+ 0.015
— Burden test 0.699 + 0.041 1.000 + 0.000 0.640-+ 0.048 1.000-= 0.000 0.891+0.016 1.000= 0.000 1.000-= 0.000 1.000 0.000 0.999-+ 0.003 0.792-+ 0.280 0.543-+ 0.070
Examp/es arec > 3.1546 for B =1, K =3 , d = 20 , and D = 0.001 (CL + ln(b) > 127) Motif binary 1.000 + 0.000 0.704+ 0.028 0.994+ 0.003 0.620-:0.038 1.000+ 0.000 1.000+ 0.000 1.000-= 0.000 0.9994 0.003 0.999- 0.003 0.899+ 0.158
and c > 1.3718 for B —1K=1,d="75, andp = 0.001 (a, + ]n(b) < —094) Motif nonbinary 0.920 4+ 0.004 0.562+ 0.028 0.647+ 0.030 0.51520.031 1.000< 0.000 1.000+ 0.000 0.989+ 0.011 0.722:+ 0.085 0.626+ 0.094 0.727 0.189

Interpretability and Retrieval of Important Subsequences

Deep Repertoire Classification

DeepRC allows for the retrieval of important sequences and subsequences

We propose a novel method Deep Repertoire Classification (DeepRC) for im- via the attention weights of sequence instances or the Integrated Gradients
mune repertoire classification with attention-based deep massive multiple in- method. Sequences with high attention weights in the real-world dataset cor-
stance learning. We consider immune repertoires as input objects, represented respond to those identified by [2]. For simulated datasets, we successfully
as bags of receptor sequence instances. retrieved the implanted indicative subsequences from trained DeepRC models.
DeepRC consists of three subnetworks: y
i i A~ A L itional featu
(i) An embedding network h to create a fixed-length feature vector z; from each retrieved motit S © EN L N ss"N (§§§Jeonncae ceear:ter?)
iable- - i - - implanted motif ~ SFEN SFYEN SZZN SZ9ZN .
variable-length sequence instance s;. (ii) The attention network f, which pools Z ... wildcard character
the sequence instances into one repertoire representation z. We apply a modi- witness rate 0.01% 0.01% 0.1% 0.1% | d... 50% deletion chance

fied modern Hopfield network as pooling mechanism to address the large num-

ber of instances. It consists of a fixed and learned state pattern or query vector https://github.com/ml-jku/DeepRC
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