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optimization in high-data situations. We validate these benefits through tests on a

: whose actions we apply through a group action layer:
. rigid body transformation task and two large-scale fluid dynamic problems.

. C . @ Exploit the advantage of local transformations on a synthetic Tetris trajectory
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where w; € Rand a : G X X — X are learned group actions.

e Elements of the geometric algebra are called multivectors. In three dimensions . @ Using geometric algebra, we put G := Pin(p, g, r)-

(G;), one represents a multivector as
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Scalar Vector Bivector Trivector : 5 ; Geometrically guided transformations are a scalable
: : Plane(reflection) Line(reflection) Point(reflection) Translation Rotation Transflection Rotoreflection Screw : _ _ )
e Multivectors can be multiplied through the geometric product. ; : ; alternative approach for geometric deep learning.
Scalar Vectors Bivectors Trivector Multivector : . ® As such, the group action layer is parameterized as 5 Geometric algebra provides an outstanding framework to
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Scientific dynamical systems are governed by geometric
transformations, which is where our method excels.
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Still Prefer Equivariance?

e We choose how basis vector square: e;¢; = ¢7 € {+1, — 1,0}

e This leads to a signature p, g, r, where p elements square to 1, g elements to -1,

and r elements to 0. : Paper SR pii)
e Different signature lead to different geometries. One can pick a signature that is : [BERAAE]  salrs Vectors  Bivectors  Trivectors

best suited for the geometry at hand.
e All elements and transformations of these geometries can be encoded in Ozt .

multivectors. E.g., vectors are simultaneously planes, arrows, and reflections.




