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The abundance of data has given machine learning considerable momentum in natural sciences and engineering,
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though modeling of physical processes is often difficult. A particularly tough problem is the efficient representation

of geometric boundaries. Triangularized geometric boundaries are well understood and ubiquitous in engineering
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applications. However, it is notoriously difficult to integrate them into machine learning approaches due to their
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Goal: Development of an Effective Theory for modeling particle-boundary in-
teraction within triangularized boundary surfaces
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Granular flow simulations are obtained by an Discrete Element Method (DEM) |2] with simulator LIGGGHTS [3]
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