
Boundary Graph Neural Networks for 3D Simulations
Andreas Mayr1 Sebastian Lehner1 Arno Mayrhofer2 Christoph Kloss2 Sepp Hochreiter1,3 Johannes Brandstetter1,*
1 ELLIS Unit Linz & LIT AI Lab, Johannes Kepler University Linz, Linz, Austria 2 DCS Computing GmbH, Linz, Austria 3 Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria

* now at Microsoft Research AI4Science

Boundary Graph Neural Networks for 3D Simulations
Andreas Mayr1 Sebastian Lehner1 Arno Mayrhofer2 Christoph Kloss2 Sepp Hochreiter1,3 Johannes Brandstetter1,*
1 ELLIS Unit Linz & LIT AI Lab, Johannes Kepler University Linz, Linz, Austria 2 DCS Computing GmbH, Linz, Austria 3 Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria

* now at Microsoft Research AI4Science

Abstract

The abundance of data has given machine learning considerable momentum in natural sciences and engineering,

though modeling of physical processes is often difficult. A particularly tough problem is the efficient representation

of geometric boundaries. Triangularized geometric boundaries are well understood and ubiquitous in engineering

applications. However, it is notoriously difficult to integrate them into machine learning approaches due to their

heterogeneity with respect to size and orientation. In this work, we introduce an effective theory to model particle-

boundary interactions, which leads to our new Boundary Graph Neural Networks (BGNNs) that dynamically

modify graph structures to obey boundary conditions. The new BGNNs are tested on complex 3D granular

flow processes of hoppers, rotating drums and mixers, which are all standard components of modern industrial

machinery but still have complicated geometry. BGNNs are evaluated in terms of computational efficiency as well

as prediction accuracy of particle flows and mixing entropies. BGNNs are able to accurately reproduce 3D granular

flows within simulation uncertainties over hundreds of thousands of simulation timesteps. Most notably, in our

experiments, particles stay within the geometric objects without using handcrafted conditions or restrictions.

Problem Statement & Main Contributions

Machine Learning for
Physical Processes:

• Relevant for natural
sciences and engineering

• Run-time intensive
computations

• Research to speedup
computations

• Boundary conditions relevant for dynamics
• Triangular meshes as boundary description

Goal: Development of an Effective Theory for modeling particle-boundary in-
teraction within triangularized boundary surfaces

Basic idea:
Approximate physical
system by factoring out
degrees of freedom not
relevant in the given
setting and problem

Boundary Graph Neural Networks for 3D Simulations

Anonymous submission

Abstract

The abundance of data has given machine learning consider-
able momentum in natural sciences and engineering, though
modeling of physical processes is often difficult. A particu-
larly tough problem is the efficient representation of geomet-
ric boundaries. Triangularized geometric boundaries are well
understood and ubiquitous in engineering applications. How-
ever, it is notoriously difficult to integrate them into machine
learning approaches due to their heterogeneity with respect to
size and orientation. In this work, we introduce an effective
theory to model particle-boundary interactions, which leads
to our new Boundary Graph Neural Networks (BGNNs) that
dynamically modify graph structures to obey boundary con-
ditions. The new BGNNs are tested on complex 3D granular
flow processes of hoppers, rotating drums and mixers, which
are all standard components of modern industrial machinery
but still have complicated geometry. BGNNs are evaluated in
terms of computational efficiency as well as prediction ac-
curacy of particle flows and mixing entropies. BGNNs are
able to accurately reproduce 3D granular flows within simu-
lation uncertainties over hundreds of thousands of simulation
timesteps. Most notably, in our experiments, particles stay
within the geometric objects without using handcrafted con-
ditions or restrictions.

1 Introduction
The deep learning revolution (Krizhevsky, Sutskever, and
Hinton 2012) has dramatically changed scientific fields such
as computer vision, natural language processing, or medical
sciences. More recently, deep learning research has been ex-
panded towards physical simulations such as fluid dynamics,
deformable materials, or aerodynamics (Li et al. 2019; Um-
menhofer et al. 2020; Sanchez-Gonzalez et al. 2020; Pfaff
et al. 2021). Currently, the progress of deep learning for
physical simulations is driven by Graph Neural Networks
(GNNs) (Scarselli et al. 2009; Defferrard, Bresson, and Van-
dergheynst 2016; Kipf and Welling 2017). GNNs are very
effective when modeling interactions between many entities
via forward dynamics (Battaglia et al. 2018), and as such are
a strong building block when it comes to the replacement of
slower numerical simulations in various engineering disci-
plines. We focus on granular flows, which are ubiquitous in
nature and consequently in industrial processes. The accu-
rate simulations of such versatile granular flows forms the
backbone of designing and improving industrial machinery.

Complex boundaries are present in every-day’s machinery
such as rotating drums, mixers or hoppers. In engineering,
these complex boundaries are typically modelled by trian-
gularizations, which are mathematical well founded and for
which efficient construction and simulation tools are avail-
able. Therefore, triangular meshes are standard for repre-
senting and modelling industrial machinery.

Effective theory. In this work, we introduce an effective
theory to model particle-boundary interactions, from which
we derive a new approach to accurately and effectively
model granular flow processes within triangularized bound-
ary surfaces. In physics, effective theories allow the descrip-
tion of phenomena within much simpler frameworks without
a significant loss of precision. The basic idea is to approxi-
mate a physical system by factoring out the degrees of free-
dom that are not relevant in the given setting and problem
to solve (e.g. using Newton’s equations instead of the much
more complicated Einstein’s equations, or, using simple al-
gebraic equations instead of numerically solving differential
equations for particle-particle interactions). Other examples
are in the fields of gravitational wave theory (Goldberger

sun

earth

boundary
surface
area

granular
flow profile

Figure 1: Effective theories of gravitational planetary move-
ment (left), and particle-boundary interactions (right). Plan-
etary movement is fully described by Einstein’s field equa-
tions that relate mass and energy densities to the curvature
of spacetime. A much simpler but in most cases sufficient
description is to apply Newton’s law of gravity to represen-
tative point masses. Black arrows indicate progress in time.
Analogously, the interactions of granular flow particles and
boundary surface areas is modeled by an effective two-point
interaction.

GNNs for Simulation Dynamics

Graph G = (V , E)
Nodes vi ∈ V with node features pvi ∈ RN
Edges eij ∈ E with edge features aij ∈ RM between a pair of nodes (vi, vj)

Nearest neighbor graphs: local interactions to build arbitrary global dynamics

eij ∈ E ⇐⇒ d(vi, vj) ⩽ rcut-off

Message passing:

m′
ij = ϕ(hi,hj,mij), h′

i = ψ
(
hi,□eij∈E m′

ij

)
with aggregation □eij∈E at node vi across all nodes connected to vi via eij

Time transition model [1] from time t to time t + 1 given by:

ẋt+1 = ẋt +∆t ẍt

xt+1 = xt +∆t ẋt+1

x . . . particle location
ẋ . . . particle velocity
∆t fixed to 1
prediction of acceleration ẍt with a GNN

Construction of BGNNs: Modification of Graph

Dynamically add ñ virtual nodes ṽj ∈ Ṽ for boundary regions, iff the corresponding boundary region is within a cut-off
radius to any other particle

Augment the set of edges eij ∈ E by boundary edges ẽij ∈ Ẽ giving an enhanced edge set Ê = E ∪ Ẽ
Particle-boundary edges ẽij defined via:

eij ∈ E ⊆ Ê ⇐⇒ d(vi, vj) ⩽ rcut-off
ẽij ∈ Ẽ ⊆ Ê ⇐⇒ d̃(vi, ṽj) ⩽ r̃cut-off

with d : V × V → R and d̃ : V × Ṽ → R

Extended node and edge features:

• P̂ = {pv0, . . . ,pvn−1, p̃ṽ0, . . . , p̃ṽñ−1
}

• X̂ = {xv0, . . . ,xvn−1, x̃ṽ0, . . . , x̃ṽñ−1
}

• Ñ -dimensional node features p̃ṽi encode information
about triangles

• x̃ṽi chosen to minimize distance between boundary
points and real particles

• p̂i with default values for missing features

• p̂i ∈ RN+Ñ , x̂i ∈ R3 denote elements of P̂ and X̂

particle-boundary interactions should contain the smallest
distances between particles and surface areas.

Given these considerations, we model particle-boundary
interactions by point-like particle-particle interactions,
where the virtual particles representing the boundary sur-
face area are placed such that the distance to the real parti-
cles is minimized. Consequently, real particles “see” differ-
ent virtual particles from the same surface area. However, for
every granular flow particle, we effectively model only one
particle-surface interaction. We give a roadmap of what fol-
lows: (i) we introduce an efficient way of calculating shortest
distances between real particles and triangularized surface
areas, and (ii) we construct a dynamic graph model which
models the time transition dynamics.
Calculation of shortest distances. In order to obtain
shortest distances between real particles and triangularized
surface areas, the squared distance between the particle cen-
ter and the closest point on the mesh triangles is calculated
(adopted from Eberly (1999)). We outline this in the follow-
ing. A location on a triangle t is parameterized by two scalar
values u0, u1 ∈ R with t(u0, u1) = b + u0 e0 + u1 e1 ,
where u0 ≥ 0, u1 ≥ 0, and u + v ⩽ 1, b represents one
of the nodes of the triangle, and, e0 and e1 are vectors from
b towards the other two nodes (see Fig. TApp. B.1). The
minimal Euclidean squared distance d of the point p to the
triangle is given by the optimization problem:

d = min
u0,u1

q(u0, u1) = ∥t(u0, u1) − p∥2 (4)

s.t. u0 ≥ 0 , u1 ≥ 0 , u0 + u1 ⩽ 1 .

The minimizing arguments u′0 and u′1 parameterize the clos-
est point t(u′0, u

′
1) of the triangle to the point p. The algo-

rithmic computation of this minimization problem is more
involved and comprises seven cases, that need to be distin-
guished (see Sect. TApp. B). Whether a virtual particle is
inserted is determined by Eq. (6) and the particle-triangle
distance d.

Boundary Graph Neural Networks (BGNNs). We asso-
ciate each graph node vi to a particle with location xvi , ve-
locity ẋvi and acceleration ẍvi , which is similar to Sanchez-
Gonzalez et al. (2020). Additionally, we modify and enhance
the graph structure to include boundaries (see Fig. 2). We dy-
namically add ñ virtual nodes ṽj ∈ Ṽ for boundary regions,
iff the corresponding boundary region is within a cut-off ra-
dius to any other particle.

We augment the set of edges eij ∈ E by boundary edges
ẽij ∈ Ẽ giving an enhanced edge set Ê = E∪Ẽ . Analogously
to Eq. (1), the existence of particle-particle edges eij and
particle-boundary edges ẽij is defined via:

eij ∈ E ⊆ Ê ⇐⇒ d(vi, vj) ⩽ rcut-off , (5)

ẽij ∈ Ẽ ⊆ Ê ⇐⇒ d̃(vi, ṽj) ⩽ r̃cut-off . (6)

The cut-off radii rcut-off and r̃cut-off need not necessarily the
be same, and, d : V × V → R, while d̃ : V × Ṽ → R, i.e.
bidirectional edges are used between real nodes and unidi-
rectional edges are used between real and virtual nodes. To
include information about boundary surfaces into particle-
boundary interactions, Ñ -dimensional node features that en-
code information about the inclination of triangles are con-
catenated with the existing node features pvi ∈ RN . Ad-
ditionally, coordinate information is used both for existing

nodes (X = {xv0 , . . . ,xvn−1}) as well as for virtual nodes
(X̃ = {x̃ṽ0 , . . . , x̃ṽñ−1}). For virtual nodes, the additional
coordinates x̃ṽj are chosen such that they minimize the dis-
tance between points from boundaries and real particles. The
resulting set of node features P̂ and node coordinates X̂ are:

P̂ = {pv0 , . . . ,pvn−1 , p̃ṽ0 , . . . , p̃ṽñ−1
}, (7)

X̂ = {xv0 , . . . ,xvn−1 , x̃ṽ0 , . . . , x̃ṽñ−1
} , (8)

where p̂i ∈ RN+Ñ and x̂i ∈ R3 denote the elements of
P̂ and X̂ , respectively. Similarly to above, message passing
updates the embeddings of edges (m̂ij) and the embeddings
of nodes (ĥi) via

m̂′
ij = ϕ̂

(
ĥi, ĥj , m̂ij

)
, (9)

ĥ′
i = ψ̂

(
ĥi,□êij∈ Ê m̂′

ij

)
, (10)

where the aggregation □êij∈ Ê at node vi in Eq. (10) is
across all real or virtual nodes that are connected to vi via
an edge êij . Similar to Gilmer et al. (2017) and Satorras,
Hoogeboom, and Welling (2021), we make use of pairwise
distances (∥x̂i − x̂j∥2 and x̂i − x̂j and deterministic func-
tions thereof). These are for BGNNs between real and be-
tween real and virtual particles and we pass this information
to the graph network as edge attributes âij , for which an
initial edge embedding m̂ij is determined via an edge em-
bedding layer. The final node embeddings are used for the
predictions via the read-out layers. For aggregation □, we
use the mean.

v0

v1v2

ṽ0

ṽ1

d̃(v
0,
ṽ0)

d̃(v2
, ṽ1

)

pv0,xv0

pv1,xv1pv2,xv2

p̃ṽ0, x̃ṽ0

p̃ṽ1, x̃ṽ1

Figure 2: Dynamic modification of the graph edges (red
lines) and nodes (red points). Left: Calculation of the dis-
tances d̃(v0, ṽ0), d̃(v2, ṽ1) between real particle at nodes v0,
v2 and the triangles corresponding to virtual particle nodes
ṽ0, ṽ1. Right: Insertion of an additional edge between ṽ0 and
v0 and between ṽ1 and v2 and representation of the nodes in
terms of the corresponding node features pvi , xvi and p̃ṽj ,
x̃ṽj for real and virtual nodes.

Dynamical graph model. At each time point a graph of
the current scene is built up, containing the minimum dis-
tances between particles and walls as well as distances be-
tween particles within certain neighborhoods. The definition

Experiment
∣∣V∣∣ ∣∣Ẽ∣∣ % increase

Hopper 1113± 738 5475± 3547 72.2
Drum 3283± 282 1678± 188 54.8

Dynamic Graph Message Passing:

m̂′
ij = ϕ̂

(
ĥi, ĥj, m̂ij

)
ĥ′
i = ψ̂

(
ĥi,□êij∈ Ê m̂′

ij

)
aggregation □

êij∈ Ê at vi across all real or virtual nodes connected via

an edge êij

usage of pairwise distances:
∥∥x̂i − x̂j

∥∥2, x̂i − x̂j, and, deterministic
functions thereof as edge attributes âij

Experimental Evaluation: Learning Simulations with 2 Materials

Granular flow simulations are obtained by an Discrete Element Method (DEM) [2] with simulator LIGGGHTS [3]

hopper cohesive hopper non-cohesive
prediction ground truth prediction ground truth

Ti
m

e

1.0 4.5 8.0
×104

−0.1

0.0

0.1

.
z

.
.

/
.

.
y

.
.

/
.

.
x

.
.

Po
si

tio
n

.

Time

Prediction
Ground Truth

1.0 4.5 8.0
×104

−5.0

−2.5

0.0

×10−4

.
z

.
.

/
.

.
y

.
.

/
.

.
x

.
.

Fl
ow

.

Time

Prediction
Ground Truth

Figure 3: Hopper dynamics. Top: Distributions for cohe-
sive and non-cohesive particles. Simulation data and BGNN
predictions are compared. Particles are indicated by green
spheres, triangular wall areas are yellow, the edges of these
triangles are indicated by grey lines. In contrast to liquid-
like non-cohesive particles, cohesive particles lead to con-
gestion of the hopper. Bottom: Position (right) and flow pro-
file (left) for non-cohesive particles. Corresponding plots for
cohesive particles can be found in Sect. TApp. D. Simulation
data (solid lines) and BGNN predictions (dashed lines) are
compared. Simulation uncertainties are due to a change of
the particle numbers (±25%) and to different initial condi-
tions. To support the reviewing process, we provide simula-
tion predictions for a hopper with more timesteps in anima-
tions at https://bgnn3dsim.bitbucket.io/.

well across variations in the geometry. This finding demon-
strates that trained BGNNs could be used for designing and
studying different geometries without retraining the model.

Moving geometries. As an additional challenge we con-
sider moving geometries, as shown in Fig. 5, where addi-
tional difficulty is imposed due to a rotating blade inside a
particle mixer. Consequently, not only the geometry but also
the blade itself are triangularized and particle-surface inter-
actions are extended by particle-blade interactions. Experi-
ments show that our BGNN approach is well suited to model
such scenarios of increased difficulty.

Table 2 gives a run-time comparison of the LIGGGHTS

rotating drum cohesive rotating drum non-cohesive
prediction ground truth prediction ground truth

Ti
m

e

−0.2 0.0 0.2

−60

−30

0

.
z

.
.

/
.

.
x

.
.

Fl
ow

.

Position z

Prediction
Ground Truth

0.20 1.15 2.10
×105

0.00

0.15

0.30
.

z
.

.
/

.
.

x
.

.
M

ix
in

g
S

.

Time

Prediction
Ground Truth

Figure 4: Rotating drum dynamics. Top: Particle distribu-
tions for cohesive and non-cohesive particles. Simulation
data and BGNN predictions are compared. Particles are in-
dicated by green spheres, triangular wall areas are yellow,
the edges of these triangles are indicated by grey lines. The
circular arrow indicates the rotation direction of the drum. In
contrast to liquid-like non-cohesive particles, cohesive par-
ticles stick together much stronger. Bottom: position (left)
and entropy plot (right) for non-cohesive particles. The en-
tropy is shown for particle class assignment according to the
x (blue) and z (red) position. Corresponding plots for co-
hesive particles can be found in Sect. TApp. D. Simulation
data (solid lines) and BGNN predictions (dashed lines) are
compared. Simulation uncertainties are due to a change of
the particle numbers (±25%) and to different initial condi-
tions. To support the reviewing process, we provide simula-
tion predictions for a rotating drum with more timesteps in
animations at https://bgnn3dsim.bitbucket.io/.

simulation versus a forward pass of BGNNs, which only
predict every 100 time step. The highly optimized CPU al-
gorithm (LIGGGHTS) and a non-optimized GPU compat-
ible algorithm (BGNNs) are compared via their wall-clock
times since the hardware settings are quite different. Never-
theless, Table 2 shows that the wall-clock time of BGNNs
is shorter than the wall-clock time of the simulation. The
usage of more particles, would further increase the lead of
BGNNs over the simulation in terms of wall-clock time.

hopper cohesive hopper non-cohesive
prediction ground truth prediction ground truth

Ti
m

e

1.0 4.5 8.0
×104

−0.1

0.0

0.1

.
z

.
.

/
.

.
y

.
.

/
.

.
x

.
.

Po
si

tio
n

.

Time

Prediction
Ground Truth

1.0 4.5 8.0
×104

−5.0

−2.5

0.0

×10−4

.
z

.
.

/
.

.
y

.
.

/
.

.
x

.
.

Fl
ow

.

Time

Prediction
Ground Truth

Figure 3: Hopper dynamics. Top: Distributions for cohe-
sive and non-cohesive particles. Simulation data and BGNN
predictions are compared. Particles are indicated by green
spheres, triangular wall areas are yellow, the edges of these
triangles are indicated by grey lines. In contrast to liquid-
like non-cohesive particles, cohesive particles lead to con-
gestion of the hopper. Bottom: Position (right) and flow pro-
file (left) for non-cohesive particles. Corresponding plots for
cohesive particles can be found in Sect. TApp. D. Simulation
data (solid lines) and BGNN predictions (dashed lines) are
compared. Simulation uncertainties are due to a change of
the particle numbers (±25%) and to different initial condi-
tions. To support the reviewing process, we provide simula-
tion predictions for a hopper with more timesteps in anima-
tions at https://bgnn3dsim.bitbucket.io/.

well across variations in the geometry. This finding demon-
strates that trained BGNNs could be used for designing and
studying different geometries without retraining the model.

Moving geometries. As an additional challenge we con-
sider moving geometries, as shown in Fig. 5, where addi-
tional difficulty is imposed due to a rotating blade inside a
particle mixer. Consequently, not only the geometry but also
the blade itself are triangularized and particle-surface inter-
actions are extended by particle-blade interactions. Experi-
ments show that our BGNN approach is well suited to model
such scenarios of increased difficulty.

Table 2 gives a run-time comparison of the LIGGGHTS

rotating drum cohesive rotating drum non-cohesive
prediction ground truth prediction ground truth

Ti
m

e

−0.2 0.0 0.2

−60

−30

0

.
z

.
.

/
.

.
x

.
.

Fl
ow

.

Position z

Prediction
Ground Truth

0.20 1.15 2.10
×105

0.00

0.15

0.30

.
z

.
.

/
.

.
x

.
.

M
ix

in
g

S
.

Time

Prediction
Ground Truth

Figure 4: Rotating drum dynamics. Top: Particle distribu-
tions for cohesive and non-cohesive particles. Simulation
data and BGNN predictions are compared. Particles are in-
dicated by green spheres, triangular wall areas are yellow,
the edges of these triangles are indicated by grey lines. The
circular arrow indicates the rotation direction of the drum. In
contrast to liquid-like non-cohesive particles, cohesive par-
ticles stick together much stronger. Bottom: position (left)
and entropy plot (right) for non-cohesive particles. The en-
tropy is shown for particle class assignment according to the
x (blue) and z (red) position. Corresponding plots for co-
hesive particles can be found in Sect. TApp. D. Simulation
data (solid lines) and BGNN predictions (dashed lines) are
compared. Simulation uncertainties are due to a change of
the particle numbers (±25%) and to different initial condi-
tions. To support the reviewing process, we provide simula-
tion predictions for a rotating drum with more timesteps in
animations at https://bgnn3dsim.bitbucket.io/.

simulation versus a forward pass of BGNNs, which only
predict every 100 time step. The highly optimized CPU al-
gorithm (LIGGGHTS) and a non-optimized GPU compat-
ible algorithm (BGNNs) are compared via their wall-clock
times since the hardware settings are quite different. Never-
theless, Table 2 shows that the wall-clock time of BGNNs
is shorter than the wall-clock time of the simulation. The
usage of more particles, would further increase the lead of
BGNNs over the simulation in terms of wall-clock time.

Computation of Samllest Distances

Efficient GPU implementation [4]:

• Triangle parameterized by t u0, u1 ∈ R with

t(u0, u1) = b + u0 e0 + u1 e1

where u0 ≥ 0, u1 ≥ 0, and u0 + u1 ⩽ 1

• Minimal Euclidean squared distance d of the point p to tri-
angle given by optimization problem:

d = min
u0,u1

q(u0, u1) = ∥t(u0, u1) − p∥2

s.t. u0 ≥ 0 , u1 ≥ 0 , u0 + u1 ⩽ 1

u1

u0
case 0

case 1

case 2

case 3

case 4 case 5
case 61

1

e
1

e0b

q (u0, u1) = const

t (u0, u1)

∇q (u0, u1) = 0

OOD Generalization

mixer

prediction ground truth

Ti
m

e

1 3 5
×105

0.1

0.3

0.5

.
z

.
.

/
.

.
x

.
.

M
ix

in
g

S
.

Time

Prediction
Ground Truth

−0.80 −0.15 0.50

−10

5

20

.
z

.
.

/
.

.
x

.
.

Fl
ow

.

Position z

Prediction
Ground Truth

Figure 5: Mixer dynamics. A mixer can be seen as a moving
geometry where additional difficulty is imposed due to ro-
tating blades inside. BGNNs are also well suited to model
such scenarios of increased difficulty. To support the re-
viewing process, we provide simulation predictions for a
rotating drum with more timesteps in animations at https:
//bgnn3dsim.bitbucket.io/

OOD hopper non-cohesive OOD drum non-cohesive
prediction ground truth prediction ground truth

Ti
m

e

Figure 6: OOD generalization behavior for the hopper (left)
and the rotating drum (right). In contrast to the training and
validation data the outlet size of the hopper was decreased,
the inclination angles of the hopper side walls are enlarged,
and, the length of the rotating drum is increased.

For the time comparison, we use a typical simulation tra-
jectory from our datasets with 3,408 particles, which needs
approximately 2 GB GPU memory for one forward pass.
There is potentially even more space for improvement of
the BGNN predictions over simulations due to the so called

Young’s modulus. For simulations, it is often assumed that
energy is purely transmitted through Rayleigh waves. Thus
the time step of DEM simulations is targeted to be a frac-
tion of the propagation time through a single, solid particle.
As such the propagation time depends on material parame-
ters, most notably the Young’s modulus. However, for sev-
eral materials the Young’s moduli that reflect the true mate-
rial properties, would lead to extremely small propagation
times, which in turn means much more simulation steps.
Consequently, much smaller Young’s moduli are considered
as an approximation, which is valid for gravity driven flows
(Coetzee 2017). However, for many cases, e.g. the penetra-
tion of a particle bed by an object, this approximation breaks
down (Lommen, Schott, and Lodewijks 2014). BGNNs have
the potential to be trained on very small time steps reflecting
the true Young’s moduli and consequently generalize over
much more than “just” 40 or 100 time steps.

method time steps real world
time

wall-clock
time [s]

LIGGGHTS 250.000 12.5s 356

BGNNs 2.500 12.5s 158

Table 2: Runtime comparison for one granular flow pro-
cess consisting of 250.000 simulation timesteps, which
are 2500 BGNN predictions. For both, simulation and
BGNN trajectories, this corresponds to a real world
time of 12.5s. LIGGGGHTS simulation is run on a
CPU AMD EPYC 7H12, BGNN forward pass is run on a
GPU NVIDIA A100.

6 Conclusion and Future Directions

We have introduced an effective theory to model complex
particle-boundary interactions, resulting in Boundary Graph
Neural Networks (BGNNs). BGNNs dynamically modify
graph structures via modifying edges, augmenting node
features, and dynamically inserting virtual nodes. BGNNs
achieve an accurate neural network modeling of simulated
physical processes within complex geometries. We have
tested BGNNs on complex 3D granular flow processes of
hoppers, rotating drums, and mixers, where BGNNs are able
to accurately reproduce these flows within simulation un-
certainties over hundreds of thousands of timesteps. Most
notably particles stay within the geometric objects without
using handcrafted conditions or restrictions. A possible ex-
tension of our work is towards a wide range of different ma-
terials, e.g. materials with high Young’s moduli as described
in Sect. 5. Another interesting extension might be to intro-
duce a velocity dependent cut-off radius, and in doing so to
also consider those particle-boundary interactions which are
about to happen within the next timesteps although the spa-
tial distances are still large. Finally, further research shall
comprise leveraging the multiple symmetries occurring in
the geometry of granular flow problems.

cohesive non-cohesive

domain µ σ µ σ

in-distribution 0.34 0.09 0.89 0.03

OOD 0.14 0.11 0.73 0.15

Comparison of the proportion (mean µ and std σ) of

particles beyond the outlet of the hopper

Runtime Comparison

method time steps
real world

time

wall-clock

time [s]

LIGGGHTS 250.000 12.5s 356

BGNNs 2.500 12.5s 158

[1] Sanchez-Gonzalez A. et al. Learning to Simulate Complex Physics with Graph Networks. 2020.
[2] Cundall P.A. and Strack O.D.L. A discrete numerical model for granular assemblies. 1979.
[3] Kloss C. et al. Models, algorithms and validation for opensource DEM and CFD–DEM. 2012.
[4] Eberly D. Distance Between Point and Triangle in 3D. Technical report, 1999.


