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Align-RUDDER in a Nutshell
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Complex tasks often have episodic rewards:

● Actions cause reward or penalty that is 

obtained much later

● Distracting rewards may be present

● Credit assignment problem: which 

action was responsible?
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Complex Tasks have Delayed Rewards
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[1] R. S. Sutton, ‘Temporal Credit Assignment in Reinforcement Learning’, University of Massachusetts, 1984



● Traditional approaches make guesses 

about the future

● Correcting the bias of temporal 

difference (TD) learning (SARSA and Q-

learning) requires exponential updates

● Monte Carlo (MC) methods have high 

variance since variance is propagated 

through all states that are visited

The Problem of TD and MC
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High Branching Factor

Probabilistic Transitions



● Analyze episodes that have been observed

○ No probabilities and no guesses about 

the future

○ Detect key events that lead to rewards 

(i.e. sub-goals)

● Supervised learning problem

● Example: RUDDER [2]

Detecting Key Events
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● Give immediate feedback

● Reward is the difference in the expected return (RUDDER [2])

● Reduces the delay of rewards

● Identifies key events and landmarks

RUDDER: Reward Redistribution to Key Events 
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Few Demonstrations

● Often only few expert demonstrations available

● Training an LSTM model…

○ …is difficult from a small number of demonstrations

○ …requires high and low return examples  
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Sequence Alignment for Reward Redistribution

● Sequence alignment works with a small number of examples

● Sequence alignment uses only closely related examples

● The result of such an alignment is a profile model

● New sequences are aligned to a profile model and receive an alignment score

● The redistributed reward is proportional to the difference of scores of consecutive 

time steps
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Mining a Diamond in Minecraft
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Image taken from MineRL [3]



(I) Define Events
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(I) Define Events
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(I) Define Events
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(I) Define Events
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(II) Determine the Scoring Matrix
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(III) Multiple sequence alignment (MSA)
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(III) Multiple sequence alignment (MSA)
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(IV) Position-specific Scoring Matrix
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(IV) Position-specific Scoring Matrix
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(IV) Reward Redistribution
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(IV) Reward Redistribution
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(IV) Reward Redistribution

16



Experiments



Experiments: Gridworld 
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Example of a reward 

redistribution in a grid 

world with four rooms

Comparison of Align-RUDDER to other methods with respect to the number 

of episodes required for learning on different numbers of demonstrations

Example of a reward 

redistribution in a grid 

world with eight rooms



Experiments: Minecraft
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• First pure learning method to obtain a 

diamond in the MineRL environment

• Only 10 demonstrations were 

necessary to identify key events

• Hierarchical RL of sub-agents 

identified using reward redistribution



Contributions

● We suggest a reinforcement algorithm that works 

well for sparse and delayed rewards, where 

standard exploration fails

● We adopt multiple sequence alignment from 

bioinformatics to construct a reward redistribution 

technique that works with few demonstrations

● We propose a method that uses alignment 

techniques and reward redistribution for 

identifying sub-goals and sub-tasks which in 

turn allow for hierarchical reinforcement learning
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